Automata and Grammars

SS 2018

Assignment 3: Solutions to Selected Problems

Seminary: Thursday, March 15, 2018.

Problem 3.1 [Nerode Relation]

Determine all equivalence classes of the Nerode relations $R_L \subseteq \Sigma^* \times \Sigma^*$ for the following languages:

(a) $\Sigma = \{a, b\}$ and $L = \{a, aab, abb\},$ (b) $\Sigma = \{a, b\}$ and $L = \{a^m ba^n \mid m, n \ge 1\},$ (c) $\Sigma = \{a, b\}$ and $L = \{a^n ba^n \mid n \ge 0\},$

In addition, for those language L, for which R_L has finite index, construct the equivalence class automaton for L.

Solution. We denote the equivalence class of a word w simply by [w].

(b) For $L = \{ a^m b a^n \mid m, n \ge 1 \}$, we obtain the following equivalence classes:

As R_L has index 5, we obtain the following equivalence class automaton $(Q, \{a, b\}, \delta, [\varepsilon], \{[aba]\})$ for L, where δ is described by the following table:

	$[\varepsilon]$	[a]	[ab]	[aba]	[b]
a	[a]	[a]	[aba]	[aba]	[b]
b	[b]	[ab]	[b]	[b]	[b]

(c) For $L = \{ a^n b a^n \mid n \ge 0 \}$, we obtain the following equivalence classes:

$$\begin{split} [\varepsilon] &= \{\varepsilon\}, \\ [a^i] &= \{a^i\} & \text{for all } i \ge 1, \\ [a^ib] &= \{a^ib\} & \text{for all } i \ge 0, \\ [a^iba^j] &= \{a^{i+k}ba^{j+k} \mid k \ge 0\} & \text{for all } 0 < j < i, \\ [b] &= L, \\ [bb] &= \{w \in \{a, b\}^+ \mid w \text{ is not a prefix of any element of } L\}. \\ \text{Thus, } R_L \text{ has infinite index.} \end{split}$$

Problem 3.2 [Myhill Nerode Theorem]

Use the Myhill Nerode Theorem to check which of the following languages are accepted by DFAs:

(a) $L_a = \{a^n b^n \mid n \ge 1\},$ (b) $L_b = \{ww \mid w \in \{a, b\}^*\},$ (c) $L_c = \{a^{2n} \mid n \ge 0\},$ (d) $L_d = \{a^{2^n} \mid n \ge 0\}.$

Solution.

- (a) For each $n \ge 1$, let $w_n = a^n b$. Then $w_n z \in L_a$ iff $z = b^{n-1}$. Hence, $(w_m, w_n) \notin R_{L_a}$ for all $m \ne n$, that is, R_{L_a} has infinite index. Thus, by the Myhill Nerode Theorem L_a is not accepted by any DFA.
- (c) It is easily seen that $[\varepsilon] = \{a^{2n} \mid n \ge 0\} = L_c$ and $[a] = \{a^{2n+1} \mid n \ge 0\}$, which shows that R_{L_c} has index two. Thus, L_c is accepted by a DFA.
- (d) For each $n \ge 0$, let $w_n = a^{2^n}$. Then $w_n w_n = a^{2^n+2^n} = a^{2^{n+1}} \in L_d$, but $w_{n+k} w_n = a^{2^{n+k}+2^n} = a^{2^n \cdot (2^k+1)} \notin L_d$. Thus, $(w_n, w_{n+k}) \notin R_{L_d}$ for all $n \ge 0$ and all $k \ge 1$. Hence, R_{L_d} has infinite index, which implies that L_d is not accepted by any DFA. \Box

Problem 3.3 [DFAs]

Two states p, q of a DFA $A = (Q, \Sigma, \delta, q_0, F)$ are called *equivalent* if, for all $w \in \Sigma^*$, $\delta(p, w) \in F$ iff $\delta(q, w) \in F$. Find all pairs of equivalent states in the following four DFAs:

(a) $A_1 = (\{q_0, q_1, ..., q_7\}, \{a, b\}, \delta_1, q_0, \{q_0, q_4, q_6\})$, where δ_1 is described through the following table:

δ_1	q_0	q_1	q_2	q_3	q_4	q_5	q_6	q_7
a	q_0	q_1	q_2	q_3	q_6	q_5	q_4	q_7
b	q_5	q_3	q_7	q_2	q_1	q_1	q_2	q_0

(b) $A_2 = (\{A, B, C, D, E, F\}, \{a, b\}, \delta_2, F, \{F\})$, where δ_2 is described by the following table:

δ_2	A	B	C	D	E	F'
a	A	B	C	D	E	F
b	F	A	D	B	C	E

(c) $A_3 = (\{q_1, q_2, \dots, q_9\}, \{a, b\}, \delta_1, q_1, \{q_3, q_5, q_6\})$, where δ_3 is described through the following table:

	δ_3	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
	a	q_2	q_2	q_3	q_2	q_6	q_6	q_7	q_2	q_9
ſ	b	q_3	q_4	q_5	q_7	q_3	q_6	q_4	q_3	q_4

(d) $A_4 = (\{A, B, C, D, E, F, G, H\}, \{a, b\}, \delta_4, G, \{G\})$, where δ_4 is described by the following table:

δ_4	A	B	C	D	E	F	G	H
a	H	B	E	D	C	F	G	A
b	G	A	D	В	D	E	F	G

Solution.

- (a) In A_1 states q_4 and q_6 are unreachable. They are not equivalent, as $\delta_1(q_4, b^5) = q_0 \in F_1$, while $\delta_1(q_6, b^5) = q_1 \notin F_1$. Further, $\delta_1(q_0, b^5) = q_7 \notin F_1$, $\delta_1(q_0, b^6) = q_0 \in F_1$, and $\delta_1(q_6, b^6) = q_3 \notin F_1$, which shows that q_0 is neither equivalent to q_4 nor to q_6 . Finally, we have $q_5 \rightarrow^b q_1 \rightarrow^b q_3 \rightarrow^b q_2 \rightarrow^b q_7 \rightarrow^b q_0$, which is the only final state in this sequence. Hence, none of these states is equivalent to any other state. Thus, there are no equivalent states in A_1
- (b) As $\delta_2(q, a) = q$ for all $q \in Q_2$, and as $F \to^b E \to^b C \to^b D \to^b B \to^b A \to^b F$, and F is the only final state, we see none of the states of A_2 are equivalent.

- (c) In A_3 , q_8 and q_9 are unreachable, but they are not equivalent, as $\delta_3(q_8, b) = q_3 \in F_3$, while $\delta_3(q_9, b) = q_4 \notin F_3$. Next, it is easily seen that the three final states q_3, q_5, q_6 are all equivalent. Further, q_2, q_4, q_7, q_9 are equivalent. Finally, q_1 and q_8 are equivalent.
- (d) For A_4 , the states A and H are equivalent, and the states C and E are equivalent. \Box

Problem 3.4 [Minimal DFA]

Use the algorithm "minimal automaton" to construct the minimal DFAs that are equivalent to the following DFAs:

(a) $B_1 = (\{q_1, q_2, \dots, q_9\}, \{a, b\}, \delta_1, q_1, \{q_3, q_5, q_6\})$, where δ_1 is described through the following table:

δ_1	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
a	q_2	q_2	q_3	q_2	q_6	q_6	q_7	q_2	q_9
b	q_3	q_4	q_5	q_7	q_3	q_6	q_4	q_3	q_4

(b) $B_2 = (\{A, B, C, D, E, F, G, H\}, \{a, b\}, \delta_2, G, \{G\})$, where δ_2 is described by the following table:

δ_2	A	B	C	D	E	F	G	H
a	H	В	E	D	C	F	G	A
b	G	Α	D	В	D	E	F	G

(c) $B_3 = (\{q_0, q_1, \dots, q_5\}, \{a, b\}, \delta_3, q_0, \{q_0\})$, where δ_3 is described through the following table:

o_3	q_0	q_1	q_2	q_3	q_4	q_5
a	q_1	q_3	q_4	q_0	q_2	q_0
b	q_2	q_0	q_5	q_2	q_5	q_3

Solution.

(a) States q_8 and q_9 are not reachable. Hence, we only need to consider the subautomaton consisting of states q_1, q_2, \ldots, q_7 . It has initial state q_1 and final states q_3, q_5 , and q_6 . Here we obtain the following table:

q_2	X					
q_3	X	X				
q_4	X		X			
q_5	X	X		X		
q_6	X	X		X		
q_7	X		X		X	X
	q_1	q_2	q_3	q_4	q_5	q_6

Thus, the resulting minimal DFA has initial state $p_1 = \{q_1\}$, final state $p_2 = \{q_3, q_5, q_6\}$, and state $p_3 = \{q_2, q_4, q_7\}$, and its transition function δ'_3 is given by the following table:

δ'_3	p_1	p_2	p_3
a	p_3	p_2	p_3
b	p_2	p_2	p_3