Automata and Grammars

SS 2018

Assignment 3: Solutions to Selected Problems

Seminary: \quad Thursday, March 15, 2018.

Problem 3.1 [Nerode Relation]

Determine all equivalence classes of the Nerode relations $R_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ for the following languages:
(a) $\Sigma=\{a, b\}$ and $L=\{a, a a b, a b b\}$,
(b) $\Sigma=\{a, b\}$ and $L=\left\{a^{m} b a^{n} \mid m, n \geq 1\right\}$,
(c) $\Sigma=\{a, b\}$ and $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$,

In addition, for those language L, for which R_{L} has finite index, construct the equivalence class automaton for L.

Solution. We denote the equivalence class of a word w simply by [w].
(b) For $L=\left\{a^{m} b a^{n} \mid m, n \geq 1\right\}$, we obtain the following equivalence classes:

$$
\begin{array}{lll}
{[\varepsilon]} & =\{\varepsilon\}, & {[a]=\left\{a^{m} \mid m \geq 1\right\}, \quad[a b]=\left\{a^{m} b \mid m \geq 1\right\},} \\
{[a b a]} & =L, & {[b]=\left\{w \in\{a, b\}^{+} \mid w \text { is not a prefix of any element of } L\right\} .}
\end{array}
$$

As R_{L} has index 5 , we obtain the following equivalence class automaton $(Q,\{a, b\}, \delta,[\varepsilon],\{[a b a]\})$ for L, where δ is described by the following table:

	$[\varepsilon]$	$[a]$	$[a b]$	$[a b a]$	$[b]$
a	$[a]$	$[a]$	$[a b a]$	$[a b a]$	$[b]$
b	$[b]$	$[a b]$	$[b]$	$[b]$	$[b]$

(c) For $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$, we obtain the following equivalence classes:

$$
\begin{array}{lll}
{[\varepsilon]} & =\{\varepsilon\}, & \\
{\left[a^{i}\right]} & =\left\{a^{i}\right\} & \text { for all } i \geq 1, \\
{\left[a^{i} b\right]} & =\left\{a^{i} b\right\} & \text { for all } i \geq 0, \\
{\left[a^{i} b a^{j}\right]} & =\left\{a^{i+k} b a^{j+k} \mid k \geq 0\right\} & \text { for all } 0<j<i, \\
{[b]} & =L, & \\
{[b b]} & =\left\{w \in\{a, b\}^{+} \mid w \text { is not a prefix of any element of } L\right\} .
\end{array}
$$

Thus, R_{L} has infinite index.

Problem 3.2 [Myhill Nerode Theorem]

Use the Myhill Nerode Theorem to check which of the following languages are accepted by DFAs:
(a) $L_{a}=\left\{a^{n} b^{n} \mid n \geq 1\right\}$,
(b) $L_{b}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$,
(c) $L_{c}=\left\{a^{2 n} \mid n \geq 0\right\}$,
(d) $L_{d}=\left\{a^{2^{n}} \mid n \geq 0\right\}$.

Solution.

(a) For each $n \geq 1$, let $w_{n}=a^{n} b$. Then $w_{n} z \in L_{a}$ iff $z=b^{n-1}$. Hence, $\left(w_{m}, w_{n}\right) \notin R_{L_{a}}$ for all $m \neq n$, that is, $R_{L_{a}}$ has infinite index. Thus, by the Myhill Nerode Theorem L_{a} is not accepted by any DFA.
(c) It is easily seen that $[\varepsilon]=\left\{a^{2 n} \mid n \geq 0\right\}=L_{c}$ and $[a]=\left\{a^{2 n+1} \mid n \geq 0\right\}$, which shows that $R_{L_{c}}$ has index two. Thus, L_{c} is accepted by a DFA.
(d) For each $n \geq 0$, let $w_{n}=a^{2^{n}}$. Then $w_{n} w_{n}=a^{2^{n}+2^{n}}=a^{2^{n+1}} \in L_{d}$, but $w_{n+k} w_{n}=$ $a^{2^{n+k}+2^{n}}=a^{2^{n} \cdot\left(2^{k}+1\right)} \notin L_{d}$. Thus, $\left(w_{n}, w_{n+k}\right) \notin R_{L_{d}}$ for all $n \geq 0$ and all $k \geq 1$. Hence, $R_{L_{d}}$ has infinite index, which implies that L_{d} is not accepted by any DFA.

Problem 3.3 [DFAs]

Two states p, q of a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ are called equivalent if, for all $w \in \Sigma^{*}, \delta(p, w) \in$ F iff $\delta(q, w) \in F$. Find all pairs of equivalent states in the following four DFAs:
(a) $A_{1}=\left(\left\{q_{0}, q_{1}, \ldots, q_{7}\right\},\{a, b\}, \delta_{1}, q_{0},\left\{q_{0}, q_{4}, q_{6}\right\}\right)$, where δ_{1} is described through the following table:

δ_{1}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}
a	q_{0}	q_{1}	q_{2}	q_{3}	q_{6}	q_{5}	q_{4}	q_{7}
b	q_{5}	q_{3}	q_{7}	q_{2}	q_{1}	q_{1}	q_{2}	q_{0}

(b) $A_{2}=\left(\{A, B, C, D, E, F\},\{a, b\}, \delta_{2}, F,\{F\}\right)$, where δ_{2} is described by the following table:

δ_{2}	A	B	C	D	E	F
a	A	B	C	D	E	F
b	F	A	D	B	C	E

(c) $A_{3}=\left(\left\{q_{1}, q_{2}, \ldots, q_{9}\right\},\{a, b\}, \delta_{1}, q_{1},\left\{q_{3}, q_{5}, q_{6}\right\}\right)$, where δ_{3} is described through the following table:

δ_{3}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
a	q_{2}	q_{2}	q_{3}	q_{2}	q_{6}	q_{6}	q_{7}	q_{2}	q_{9}
b	q_{3}	q_{4}	q_{5}	q_{7}	q_{3}	q_{6}	q_{4}	q_{3}	q_{4}

(d) $A_{4}=\left(\{A, B, C, D, E, F, G, H\},\{a, b\}, \delta_{4}, G,\{G\}\right)$, where δ_{4} is described by the following table:

δ_{4}	A	B	C	D	E	F	G	H
a	H	B	E	D	C	F	G	A
b	G	A	D	B	D	E	F	G

Solution.

(a) In A_{1} states q_{4} and q_{6} are unreachable. They are not equivalent, as $\delta_{1}\left(q_{4}, b^{5}\right)=q_{0} \in F_{1}$, while $\delta_{1}\left(q_{6}, b^{5}\right)=q_{1} \notin F_{1}$. Further, $\delta_{1}\left(q_{0}, b^{5}\right)=q_{7} \notin F_{1}, \delta_{1}\left(q_{0}, b^{6}\right)=q_{0} \in F_{1}$, and $\delta_{1}\left(q_{6}, b^{6}\right)=q_{3} \notin F_{1}$, which shows that q_{0} is neither equivalent to q_{4} nor to q_{6}. Finally, we have $q_{5} \rightarrow^{b} q_{1} \rightarrow^{b} q_{3} \rightarrow^{b} q_{2} \rightarrow^{b} q_{7} \rightarrow^{b} q_{0}$, which is the only final state in this sequence. Hence, none of these states is equivalent to any other state. Thus, there are no equivalent states in A_{1}
(b) As $\delta_{2}(q, a)=q$ for all $q \in Q_{2}$, and as $F \rightarrow^{b} E \rightarrow^{b} C \rightarrow^{b} D \rightarrow^{b} B \rightarrow^{b} A \rightarrow^{b} F$, and F is the only final state, we see none of the states of A_{2} are equivalent.
(c) In A_{3}, q_{8} and q_{9} are unreachable, but they are not equivalent, as $\delta_{3}\left(q_{8}, b\right)=q_{3} \in F_{3}$, while $\delta_{3}\left(q_{9}, b\right)=q_{4} \notin F_{3}$. Next, it is easily seen that the three final states q_{3}, q_{5}, q_{6} are all equivalent. Further, $q_{2}, q_{4}, q_{7}, q_{9}$ are equivalent. Finally, q_{1} and q_{8} are equivalent.
(d) For A_{4}, the states A and H are equivalent, and the states C and E are equivalent.

Problem 3.4 [Minimal DFA]

Use the algorithm "minimal automaton" to construct the minimal DFAs that are equivalent to the following DFAs:
(a) $B_{1}=\left(\left\{q_{1}, q_{2}, \ldots, q_{9}\right\},\{a, b\}, \delta_{1}, q_{1},\left\{q_{3}, q_{5}, q_{6}\right\}\right)$, where δ_{1} is described through the following table:

δ_{1}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
a	q_{2}	q_{2}	q_{3}	q_{2}	q_{6}	q_{6}	q_{7}	q_{2}	q_{9}
b	q_{3}	q_{4}	q_{5}	q_{7}	q_{3}	q_{6}	q_{4}	q_{3}	q_{4}

(b) $B_{2}=\left(\{A, B, C, D, E, F, G, H\},\{a, b\}, \delta_{2}, G,\{G\}\right)$, where δ_{2} is described by the following table:

δ_{2}	A	B	C	D	E	F	G	H
a	H	B	E	D	C	F	G	A
b	G	A	D	B	D	E	F	G

(c) $B_{3}=\left(\left\{q_{0}, q_{1}, \ldots, q_{5}\right\},\{a, b\}, \delta_{3}, q_{0},\left\{q_{0}\right\}\right)$, where δ_{3} is described through the following table:

δ_{3}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
a	q_{1}	q_{3}	q_{4}	q_{0}	q_{2}	q_{0}
b	q_{2}	q_{0}	q_{5}	q_{2}	q_{5}	q_{3}

Solution.

(a) States q_{8} and q_{9} are not reachable. Hence, we only need to consider the subautomaton consisting of states $q_{1}, q_{2}, \ldots, q_{7}$. It has initial state q_{1} and final states q_{3}, q_{5}, and q_{6}. Here we obtain the following table:

q_{2}	X						
q_{3}	X	X					
q_{4}	X		X				
q_{5}	X	X		X			
q_{6}	X	X		X			
q_{7}	X		X		X	X	
	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	

Thus, the resulting minimal DFA has initial state $p_{1}=\left\{q_{1}\right\}$, final state $p_{2}=\left\{q_{3}, q_{5}, q_{6}\right\}$, and state $p_{3}=\left\{q_{2}, q_{4}, q_{7}\right\}$, and its transition function δ_{3}^{\prime} is given by the following table:

δ_{3}^{\prime}	p_{1}	p_{2}	p_{3}
a	p_{3}	p_{2}	p_{3}
b	p_{2}	p_{2}	p_{3}

