Automata and Grammars

SS 2018

Assignment 4

Solutions are to be presented at the Seminary on Thursday, March 22, 2018.

Problem 4.1 [NFAs]

Let $A = (Q, \{a, b\}, \delta, S, F)$ be the NFA that is given by the following table, where \leftarrow indicates an initial state and \rightarrow indicates a final state:

	8	q_0^{\leftarrow}	q_1	q_2	q_3	q_4	q_5	$q_{6\rightarrow}$	q_7	q_8	q_9	q_{10}	q_{11}	q_{12}	$q_{13\rightarrow}$
(a	q_0, q_1	q_2	_	q_3	q_5	q_6	q_6	q_7	q_9	q_{10}, q_{11}, q_{12}	q_{10}, q_{11}	q_{12}	_	q_{13}
	b	q_0	_	q_3, q_4	q_3, q_4	_	_	q_6	q_7, q_8	_	_	q_{10}	_	q_{13}	q_{13}

Determine the sets $\hat{\delta}(P, x)$ for the following sets $P_i \subseteq Q$ and the words $x \in \{aaba, baaa, baba\}$: $P_1 = \{q_0\}, P_2 = \{q_7\}, P_3 = \{q_2, q_{10}\}.$

Problem 4.2 [NFAs]

Construct nondeterministic finite-state automata for the following languages:

$$L_1 = \{ w \in \{a,b\}^* \mid |w| = (3k+2) \text{ for some } k \geq 0 \text{ or } w \text{ ends with } b \} \text{ and } L_2 = \{ w \in \{a,b\}^* \mid w \text{ contains the factor } abb \text{ or the factor } bab \}.$$

Problem 4.3 [Power Set Construction]

Use the so-called 'lazy power set construction' to turn the following NFAs into DFAs:

(a) $A_1 = (Q_1, \{a, b\}, \delta_1, S_1, F_1)$ is given by the following table:

δ_1	$q_0^{ ightarrow}$	q_1	q_2	q_3	$q_{4\leftarrow}$
a	q_0	_	q_3	_	_
b	q_0, q_1	q_2	_	q_4	_

(b) $A_2 = (Q_2, \{a, b\}, \delta_2, S_2, F_2)$ is given by the following table:

δ_2	$q_0^{ ightarrow}$	q_1	q_2	$q_{3\leftarrow}$	q_4	q_5	$q_{6\leftarrow}$
a	q_0, q_1	_	_	_	q_5	_	_
b	q_0, q_4	q_2	q_3	_	_	q_6	_

Problem 4.4 [NFAs and Regular Grammars]

Construct NFAs from the following right regular grammars (see the proof of Theorem 2.16):

(a) $G = (\{S, A, B\}, \{a, b\}, S, P)$, where P contains the following productions:

(b) $G = (\{S, A, B, C\}, \{a, b\}, S, P)$, where P contains the following productions:

Problem 4.5 [ε -NFA]

Let $A = (Q, \{a, b\}, \delta, S, F)$ be the ε -NFA that is described by the following table:

δ	0←	1	2	3	4	5	6	7	8	9	10	11_{\rightarrow}
ε	1	4	-	7	8	_	7	11	_	_	7	-
\overline{a}	0	2	_	3	_	_	6	7	9	_	_	1
\overline{b}	0	_	3	3	5	6	6	7	_	10	_	_

Determine the set ε -closure (P_i) for the following subsets P_i of $Q = \{0, 1, 2, \dots, 11\}$:

(a)
$$P_1 = \{0\}$$
, (b) $P_2 = \{3\}$, (c) $P_3 = \{6\}$, (d) $P_4 = \{1, 9\}$.

Hint: See the definition of ε -closure(P) in the proof of Theorem 2.20!

Problem 4.6 [Power Set Construction for ε -NFA]

Determine an equivalent DFA by the 'lazy power set construction' (see the proof of Theorem 2.20) from the ε -NFA A that is given by the following table:

δ_1	q_0^{\leftarrow}	q_1	q_2	q_3	q_4	q_5^{\leftarrow}	q_6	q_7	q_8	$q_{9 ightarrow}$
ε	_	q_{2}, q_{3}	_	-	q_5,q_7	–	_	_	q_5	_
a	q_1	_	q_4	q_8	_	_	_	q_9	_	_
b	_	_	_	_	_	q_6	q_9	_	_	_