Automata and Grammars #### SS 2018 ### Assignment 4 Solutions are to be presented at the Seminary on Thursday, March 22, 2018. ### Problem 4.1 [NFAs] Let $A = (Q, \{a, b\}, \delta, S, F)$ be the NFA that is given by the following table, where \leftarrow indicates an initial state and \rightarrow indicates a final state: | | 8 | q_0^{\leftarrow} | q_1 | q_2 | q_3 | q_4 | q_5 | $q_{6\rightarrow}$ | q_7 | q_8 | q_9 | q_{10} | q_{11} | q_{12} | $q_{13\rightarrow}$ | |---|---|--------------------|-------|------------|------------|-------|-------|--------------------|------------|-------|--------------------------|------------------|----------|----------|---------------------| | (| a | q_0, q_1 | q_2 | _ | q_3 | q_5 | q_6 | q_6 | q_7 | q_9 | q_{10}, q_{11}, q_{12} | q_{10}, q_{11} | q_{12} | _ | q_{13} | | | b | q_0 | _ | q_3, q_4 | q_3, q_4 | _ | _ | q_6 | q_7, q_8 | _ | _ | q_{10} | _ | q_{13} | q_{13} | Determine the sets $\hat{\delta}(P, x)$ for the following sets $P_i \subseteq Q$ and the words $x \in \{aaba, baaa, baba\}$: $P_1 = \{q_0\}, P_2 = \{q_7\}, P_3 = \{q_2, q_{10}\}.$ # Problem 4.2 [NFAs] Construct nondeterministic finite-state automata for the following languages: $$L_1 = \{ w \in \{a,b\}^* \mid |w| = (3k+2) \text{ for some } k \geq 0 \text{ or } w \text{ ends with } b \} \text{ and } L_2 = \{ w \in \{a,b\}^* \mid w \text{ contains the factor } abb \text{ or the factor } bab \}.$$ ### **Problem 4.3** [Power Set Construction] Use the so-called 'lazy power set construction' to turn the following NFAs into DFAs: (a) $A_1 = (Q_1, \{a, b\}, \delta_1, S_1, F_1)$ is given by the following table: | δ_1 | $q_0^{ ightarrow}$ | q_1 | q_2 | q_3 | $q_{4\leftarrow}$ | |------------|--------------------|-------|-------|-------|-------------------| | a | q_0 | _ | q_3 | _ | _ | | b | q_0, q_1 | q_2 | _ | q_4 | _ | (b) $A_2 = (Q_2, \{a, b\}, \delta_2, S_2, F_2)$ is given by the following table: | δ_2 | $q_0^{ ightarrow}$ | q_1 | q_2 | $q_{3\leftarrow}$ | q_4 | q_5 | $q_{6\leftarrow}$ | |------------|--------------------|-------|-------|-------------------|-------|-------|-------------------| | a | q_0, q_1 | _ | _ | _ | q_5 | _ | _ | | b | q_0, q_4 | q_2 | q_3 | _ | _ | q_6 | _ | #### **Problem 4.4** [NFAs and Regular Grammars] Construct NFAs from the following right regular grammars (see the proof of Theorem 2.16): (a) $G = (\{S, A, B\}, \{a, b\}, S, P)$, where P contains the following productions: (b) $G = (\{S, A, B, C\}, \{a, b\}, S, P)$, where P contains the following productions: ## Problem 4.5 [ε -NFA] Let $A = (Q, \{a, b\}, \delta, S, F)$ be the ε -NFA that is described by the following table: | δ | 0← | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11_{\rightarrow} | |----------------|----|---|---|---|---|---|---|----|---|----|----|--------------------| | ε | 1 | 4 | - | 7 | 8 | _ | 7 | 11 | _ | _ | 7 | - | | \overline{a} | 0 | 2 | _ | 3 | _ | _ | 6 | 7 | 9 | _ | _ | 1 | | \overline{b} | 0 | _ | 3 | 3 | 5 | 6 | 6 | 7 | _ | 10 | _ | _ | Determine the set ε -closure (P_i) for the following subsets P_i of $Q = \{0, 1, 2, \dots, 11\}$: (a) $$P_1 = \{0\}$$, (b) $P_2 = \{3\}$, (c) $P_3 = \{6\}$, (d) $P_4 = \{1, 9\}$. **Hint:** See the definition of ε -closure(P) in the proof of Theorem 2.20! # **Problem 4.6** [Power Set Construction for ε -NFA] Determine an equivalent DFA by the 'lazy power set construction' (see the proof of Theorem 2.20) from the ε -NFA A that is given by the following table: | δ_1 | q_0^{\leftarrow} | q_1 | q_2 | q_3 | q_4 | q_5^{\leftarrow} | q_6 | q_7 | q_8 | $q_{9 ightarrow}$ | |---------------|--------------------|----------------|-------|-------|-----------|--------------------|-------|-------|-------|-------------------| | ε | _ | q_{2}, q_{3} | _ | - | q_5,q_7 | – | _ | _ | q_5 | _ | | a | q_1 | _ | q_4 | q_8 | _ | _ | _ | q_9 | _ | _ | | b | _ | _ | _ | _ | _ | q_6 | q_9 | _ | _ | _ |