Automata and Grammars

SS 2018

Assignment 2: Solutions to Selected Problems

Seminary: \quad Thursday, March 8, 2018.

Problem 2.1. [Normal Form for Regular Grammars]

Determine a grammar in right normal form that generates the same language as the following grammar $G=(\{S, A, B, C, D\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{llllll}
S \rightarrow a a A, & S & \rightarrow b b B, & S & \rightarrow C, \\
A \rightarrow a a A, & A \rightarrow B, & & \\
B & \rightarrow b b B, & B \rightarrow A, & B \rightarrow C, \\
C \rightarrow a a A, & C \rightarrow b b B, & C \rightarrow D, \\
C \rightarrow a a A, & D \rightarrow b b B, & D \rightarrow \varepsilon .
\end{array}
$$

Hint: Use the construction from the proof of Theorem 2.5.
Solution. The construction proceeds in three steps:

1. Eliminate the ε-productions.
2. Eliminate the chain productions.
3. Split long productions into short ones.
4. $N_{1}=\left\{X \in\{S, A, B, C, D\} \mid X \rightarrow_{P}^{*} \varepsilon\right\}=\{S, A, B, C, D\}$.

Now we remove all ε-rules and introduce replacement rules, which results in the set of productions P_{1} :

$$
\begin{array}{lllllllllll}
S & \rightarrow a a A, & S & \rightarrow b b B, & S & \rightarrow & C, & S & \rightarrow a a, & S & \rightarrow b b, \\
A & \rightarrow a a A, & A \rightarrow B, & A \rightarrow a a, & & & & \\
B & \rightarrow b b B, & B \rightarrow A, & B \rightarrow C, & B \rightarrow b b, & & \\
C \rightarrow a a A, & C \rightarrow b b B, & C \rightarrow D, & \rightarrow & \rightarrow & \rightarrow a a, & C \rightarrow b b, \\
D & \rightarrow a a A, & D \rightarrow b b B, & D \rightarrow a a, & D \rightarrow b b . & &
\end{array}
$$

As $S \in N_{1}$, we also add the production $S \rightarrow \varepsilon$. Observe that S does not occur on the right-hand side of any production.
2. P_{1} contains the following chain rules:

$$
S \rightarrow C, \quad A \rightarrow B, \quad B \rightarrow A, \quad B \rightarrow C, \quad C \rightarrow D .
$$

Hence, $A \leftrightarrow B<C$, and $S<C<D$. First we replace all occurrences of B by A, deleting chain rules of the form $X \rightarrow X$ and multiple occurrences of productions, which yields P_{2} :

$$
\begin{aligned}
& S \rightarrow a a A, \quad S \rightarrow b b A, S \rightarrow C, S \rightarrow a a, S \rightarrow b b, S \rightarrow \varepsilon, \\
& A \rightarrow a a A, \quad A \rightarrow a a, \\
& A \rightarrow b b A, \quad A \rightarrow C, A \rightarrow b b, \\
& C \rightarrow a a A, C \rightarrow b b A, C \rightarrow D, C \rightarrow a a, C \rightarrow b b, \\
& D \rightarrow a a A, D \rightarrow b b A, \quad D \rightarrow a a, D \rightarrow b b .
\end{aligned}
$$

Finally, we remove all chain rules and introduce corresponding replacement rules, proceeding from D down to S, which gives P_{3} :

$$
\begin{aligned}
& S \quad \rightarrow a a A, \quad S \rightarrow b b A, \quad S \quad \rightarrow a a, \quad S \quad \rightarrow \quad b b, \quad S \rightarrow \varepsilon, \\
& A \rightarrow a a A, \quad A \rightarrow a a, \quad A \rightarrow b b A, A \rightarrow b b, \\
& C \quad \rightarrow a a A, \quad C \quad \rightarrow b b A, \quad C \quad \rightarrow a a, \quad C \quad \rightarrow \quad b b, \\
& D \quad \rightarrow a a A, \quad D \rightarrow b b A, \quad D \rightarrow a a, \quad D \rightarrow b b .
\end{aligned}
$$

3. As C and D are not reachable from S, we can delete all C - and D-productions from P_{3}. The remaining S - and A-productions are split into shorter productions, where S_{1}, S_{2}, S_{3}, $S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$ are new nonterminals, which yields the final set of productions P_{4} in right normal form:

$$
\begin{array}{lllllllllll}
S & \rightarrow a S_{1}, & S & \rightarrow b S_{2}, & S & \rightarrow & a S_{3}, & S & \rightarrow b S_{4}, & S \rightarrow \varepsilon, \\
S_{1} & \rightarrow a A, & S_{2} & \rightarrow b A, & S_{3} & \rightarrow & a, & S_{4} \rightarrow b, & \\
A & \rightarrow a A_{1}, & A & \rightarrow a A_{2}, & A & \rightarrow b A_{3}, & A & \rightarrow b A_{4}, & \\
A_{1} \rightarrow a A, & A_{2} \rightarrow b, & A_{3} \rightarrow b A, & A_{4} \rightarrow b .
\end{array}
$$

Problem 2.2 [Closure Properties for Regular Grammars]

Let $G_{1}=\left(N_{1}, \Sigma, S_{1}, P_{1}\right)$ and $G_{2}=\left(N_{2}, \Sigma, S_{2}, P_{2}\right)$ be two right regular grammars such that N_{1} and N_{2} are disjoint.

1. Construct a right regular grammar G from G_{1} and G_{2} such that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
2. Construct a right regular grammar G from G_{1} and G_{2} such that $L(G)=L\left(G_{1}\right) \cap L\left(G_{2}\right)$.
3. Construct a right regular grammar G from G_{1} and G_{2} such that $L(G)=L\left(G_{1}\right) \cdot L\left(G_{2}\right)$.
4. Construct a right regular grammar G from G_{1} such that $L(G)=\left(L\left(G_{1}\right)\right)^{*}$.

Hint: You may assume that the grammars G_{1} and G_{2} are in right normal form.
Solution. Let G_{1} and G_{2} be in right normal form, and let S be a new nonterminal.

1. Let $G=\left(\{S\} \cup N_{1} \cup N_{2}, \Sigma, S, P\right)$, where P is defined as follows:

$$
P=P_{1} \cup P_{2} \cup\left\{S \rightarrow \alpha_{1} \mid\left(S_{1} \rightarrow \alpha_{1}\right) \in P_{1}\right\} \cup\left\{S \rightarrow \alpha_{2} \mid\left(S_{2} \rightarrow \alpha_{2}\right) \in P_{2}\right\} .
$$

Then it is easily seen that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
2. Let $G=\left(N, \Sigma,\left[S_{1}, S_{2}\right], P\right)$, where $N=\left\{\left[A_{1}, A_{2}\right] \mid A_{1} \in N_{1}, A_{2} \in N_{2}\right\}$ and P is defined as follows:

$$
\begin{aligned}
P= & \left\{\left[A_{1}, A_{2}\right] \rightarrow a\left[B_{1}, B_{2}\right] \mid a \in \Sigma,\left(A_{1} \rightarrow a B_{1}\right) \in P_{1}, \text { and }\left(A_{2} \rightarrow a B_{2}\right) \in P_{2}\right\} \cup \\
& \left\{\left[A_{1}, A_{2}\right] \rightarrow a \mid a \in \Sigma,\left(A_{1} \rightarrow a\right) \in P_{1}, \text { and }\left(A_{2} \rightarrow a\right) \in P_{2}\right\} \cup \\
& \left\{\left[S_{1}, S_{2}\right] \rightarrow \varepsilon \mid\left(S_{1} \rightarrow \varepsilon\right) \in P_{1} \text { and }\left(S_{2} \rightarrow \varepsilon\right) \in P_{2}\right\} .
\end{aligned}
$$

Then $L(G)=L\left(G_{1}\right) \cap L\left(G_{2}\right)$.
3. Let $G=\left(\{S\} \cup N_{1} \cup N_{2}, S, P\right)$, where P is defined as follows:

$$
\begin{aligned}
P= & \left\{S \rightarrow a A_{1} \mid\left(S_{1} \rightarrow a A_{1}\right) \in P_{1}\right\} \cup\left\{S \rightarrow a S_{2} \mid\left(S_{1} \rightarrow a\right) \in P_{1}\right\} \cup \\
& \left\{A_{1} \rightarrow a B_{1} \mid\left(A_{1} \rightarrow a B_{1}\right) \in P_{1}\right\} \cup\left\{A_{1} \rightarrow a S_{2} \mid\left(A_{1} \rightarrow a\right) \in P_{1}\right\} \cup \\
& P_{2} \cup\left\{S \rightarrow S_{2} \mid\left(S_{1} \rightarrow \varepsilon\right) \in P_{1}\right\} .
\end{aligned}
$$

Then $L(G)=L\left(G_{1}\right) \cdot L\left(G_{2}\right)$.
4. Let $G=\left(\{S\} \cup N_{1}, S, P\right)$, where P is defined as follows:

$$
P=\left\{S \rightarrow \varepsilon, S \rightarrow S_{1}\right\} \cup P_{1} \cup\left\{A \rightarrow a S_{1} \mid(A \rightarrow a) \in P_{1}\right\}
$$

Then $L(G)=\left(L\left(G_{1}\right)\right)^{*}$.

Problem 2.4 [DFAs]

Determine the languages that are accepted by the following deterministic finite-state automata $\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0}, F\right)$, where δ and F are defined as follows:
(a) $F=\left\{q_{1}, q_{2}\right\}$ and $\delta:$

	0	1
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{1}
q_{2}	q_{0}	q_{2}

(b) $F=\left\{q_{2}\right\} \quad$ and $\delta:$

	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{0}	q_{2}
q_{2}	q_{0}	q_{2}

(c) $F=\left\{q_{1}, q_{2}\right\}$ and δ :

$:$| | 0 | 1 |
| :---: | :---: | :---: |
| q_{0} | q_{0} | q_{1} |
| q_{1} | q_{2} | q_{1} |
| q_{2} | q_{0} | q_{1} |.

Solution. The above DFAs accept the following languages:
(a) $L_{a}=\left\{\left.w \in\{0,1\}^{+}| | w\right|_{0} \equiv 1 \bmod 3\right.$ or $\left.|w|_{0} \equiv 2 \bmod 3\right\}$,
(b) $L_{b}=\left\{w \in\{0,1\}^{+} \mid w=u 11\right.$ for some $\left.u \in\{0,1\}^{*}\right\}$,
(c) $L_{c}=\left\{w \in\{0,1\}^{+} \mid w=u 1\right.$ or $w=u 10$ for some $\left.u \in\{0,1\}^{*}\right\}$.

