Automata and Grammars

SS 2018

Assignment 2: Solutions to Selected Problems

Seminary: Thursday, March 8, 2018.

Problem 2.1. [Normal Form for Regular Grammars]

Determine a grammar in *right normal form* that generates the same language as the following grammar $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$, where P contains the following productions:

S	\rightarrow	aaA,	S	\rightarrow	bbB,	S	\rightarrow	C,
A	\rightarrow	aaA,	A	\rightarrow	B,			
В	\rightarrow	bbB,	B	\rightarrow	A,	B	\rightarrow	C,
C	\rightarrow	aaA,	C	\rightarrow	bbB,	C	\rightarrow	D,
D	\rightarrow	aaA,	D	\rightarrow	bbB,	D	\rightarrow	ε.

Hint: Use the construction from the proof of Theorem 2.5.

Solution. The construction proceeds in three steps:

- 1. Eliminate the ε -productions.
- 2. Eliminate the chain productions.
- 3. Split long productions into short ones.
- 1. $N_1 = \{ X \in \{S, A, B, C, D\} \mid X \to_P^* \varepsilon \} = \{S, A, B, C, D\}.$

Now we remove all ε -rules and introduce replacement rules, which results in the set of productions P_1 :

S	\rightarrow	aaA,	$S \rightarrow$	bbB,	S –	\rightarrow C,	S	\rightarrow	aa,	S	\rightarrow	bb,
A	\rightarrow	aaA,	$A \rightarrow$	B,	A –	$\rightarrow aa,$						
В	\rightarrow	bbB,	$B \rightarrow$	A,	B –	\rightarrow C,	B	\rightarrow	bb,			
C	\rightarrow	aaA,	$C \rightarrow$	bbB,	C –	$\rightarrow D,$	C	\rightarrow	aa,	C	\rightarrow	bb,
D	\rightarrow	aaA,	$D \rightarrow$	bbB,	D –	$\rightarrow aa,$	D	\rightarrow	bb.			

As $S \in N_1$, we also add the production $S \to \varepsilon$. Observe that S does not occur on the right-hand side of any production.

- 2. P_1 contains the following chain rules:
 - $S \rightarrow C, \quad A \rightarrow B, \quad B \rightarrow A, \quad B \rightarrow C, \quad C \rightarrow D.$

Hence, $A \leftrightarrow B < C$, and S < C < D. First we replace all occurrences of B by A, deleting chain rules of the form $X \to X$ and multiple occurrences of productions, which yields P_2 :

Finally, we remove all chain rules and introduce corresponding replacement rules, proceeding from D down to S, which gives P_3 :

S	\rightarrow	aaA,	S	\rightarrow	bbA,	S	\rightarrow	aa,	S	\rightarrow	bb,	S	\rightarrow	$\varepsilon,$
A	\rightarrow	aaA,	A	\rightarrow	aa,	A	\rightarrow	bbA,	A	\rightarrow	bb,			
C	\rightarrow	aaA,	C	\rightarrow	bbA,	C	\rightarrow	aa,	C	\rightarrow	bb,			
D	\rightarrow	aaA,	D	\rightarrow	bbA,	D	\rightarrow	aa,	D	\rightarrow	bb.			

3. As C and D are not reachable from S, we can delete all C- and D-productions from P_3 . The remaining S- and A-productions are split into shorter productions, where S_1, S_2, S_3 , S_4, A_1, A_2, A_3, A_4 are new nonterminals, which yields the final set of productions P_4 in right normal form:

Problem 2.2 [Closure Properties for Regular Grammars]

Let $G_1 = (N_1, \Sigma, S_1, P_1)$ and $G_2 = (N_2, \Sigma, S_2, P_2)$ be two right regular grammars such that N_1 and N_2 are disjoint.

- 1. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cup L(G_2)$.
- 2. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cap L(G_2)$.
- 3. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cdot L(G_2)$.
- 4. Construct a right regular grammar G from G_1 such that $L(G) = (L(G_1))^*$.

Hint: You may assume that the grammars G_1 and G_2 are in right normal form.

Solution. Let G_1 and G_2 be in right normal form, and let S be a new nonterminal.

1. Let $G = (\{S\} \cup N_1 \cup N_2, \Sigma, S, P)$, where P is defined as follows:

$$P = P_1 \cup P_2 \cup \{ S \to \alpha_1 \mid (S_1 \to \alpha_1) \in P_1 \} \cup \{ S \to \alpha_2 \mid (S_2 \to \alpha_2) \in P_2 \}.$$

Then it is easily seen that $L(G) = L(G_1) \cup L(G_2)$.

2. Let $G = (N, \Sigma, [S_1, S_2], P)$, where $N = \{ [A_1, A_2] \mid A_1 \in N_1, A_2 \in N_2 \}$ and P is defined as follows:

$$P = \{ [A_1, A_2] \to a[B_1, B_2] \mid a \in \Sigma, (A_1 \to aB_1) \in P_1, \text{ and } (A_2 \to aB_2) \in P_2 \} \cup \\ \{ [A_1, A_2] \to a \mid a \in \Sigma, (A_1 \to a) \in P_1, \text{ and } (A_2 \to a) \in P_2 \} \cup \\ \{ [S_1, S_2] \to \varepsilon \mid (S_1 \to \varepsilon) \in P_1 \text{ and } (S_2 \to \varepsilon) \in P_2 \}.$$

Then $L(G) = L(G_1) \cap L(G_2)$.

3. Let $G = (\{S\} \cup N_1 \cup N_2, S, P)$, where P is defined as follows:

$$P = \{ S \to aA_1 \mid (S_1 \to aA_1) \in P_1 \} \cup \{ S \to aS_2 \mid (S_1 \to a) \in P_1 \} \cup \{ A_1 \to aB_1 \mid (A_1 \to aB_1) \in P_1 \} \cup \{ A_1 \to aS_2 \mid (A_1 \to a) \in P_1 \} \cup P_2 \cup \{ S \to S_2 \mid (S_1 \to \varepsilon) \in P_1 \}.$$

Then $L(G) = L(G_1) \cdot L(G_2)$.

4. Let $G = (\{S\} \cup N_1, S, P)$, where P is defined as follows:

$$P = \{S \to \varepsilon, S \to S_1\} \cup P_1 \cup \{A \to aS_1 \mid (A \to a) \in P_1\}$$
$$= (L(G_1))^*.$$

Then $L(G) = (L(G_1))^*$.

Problem 2.4 [DFAs]

Determine the languages that are accepted by the following deterministic finite-state automata $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, F)$, where δ and F are defined as follows:

0 1 q_1 q_0 q_0 (a) $F = \{q_1, q_2\}$ and δ : q_1 q_1 q_2 q_2 q_0 q_2 0 1 q_0 q_0 q_1 (b) $F = \{q_2\}$ and δ : q_1 q_0 q_2 q_2 q_2 q_0 1 0 q_0 q_0 q_1 (c) $F = \{q_1, q_2\}$ and δ : q_1 q_2 q_1 q_2 q_0 q_1

Solution. The above DFAs accept the following languages:

(a)
$$L_a = \{ w \in \{0,1\}^+ \mid |w|_0 \equiv 1 \mod 3 \text{ or } |w|_0 \equiv 2 \mod 3 \},$$

- (a) $L_a = \{ w \in \{0, 1\}^+ | w|_0 = 1 \text{ nod } 0 \text{ or } |w|_0 = 2 \text{ nod } 0 \},$ (b) $L_b = \{ w \in \{0, 1\}^+ | w = u11 \text{ for some } u \in \{0, 1\}^* \},$ (c) $L_c = \{ w \in \{0, 1\}^+ | w = u1 \text{ or } w = u10 \text{ for some } u \in \{0, 1\}^* \}.$