Automata and Grammars

SS 2018

Assignment 3

Solutions are to be presented at the Seminary on Thursday, March 15, 2018.

Problem 3.1 [Nerode Relation]

Determine all equivalence classes of the Nerode relations $R_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ for the following languages:
(a) $\Sigma=\{a, b\}$ and $L=\{a, a a b, a b b\}$,
(b) $\Sigma=\{a, b\}$ and $L=\left\{a^{m} b a^{n} \mid m, n \geq 1\right\}$,
(c) $\Sigma=\{a, b\}$ and $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$,

In addition, for those language L, for which R_{L} has finite index, construct the equivalence class automaton for L.

Problem 3.2 [Myhill Nerode Theorem]
Use the Myhill Nerode Theorem to check which of the following languages are accepted by DFAs:
(a) $L_{a}=\left\{a^{n} b^{n} \mid n \geq 1\right\}$,
(b) $L_{b}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$,
(c) $L_{c}=\left\{a^{2 n} \mid n \geq 0\right\}$,
(d) $L_{d}=\left\{a^{2^{n}} \mid n \geq 0\right\}$.

Problem 3.3 [DFAs]
Two states p, q of a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ are called equivalent if, for all $w \in \Sigma^{*}, \delta(p, w) \in$ F iff $\delta(q, w) \in F$. Find all pairs of equivalent states in the following four DFAs:
(a) $A_{1}=\left(\left\{q_{0}, q_{1}, \ldots, q_{7}\right\},\{a, b\}, \delta_{1}, q_{0},\left\{q_{0}, q_{4}, q_{6}\right\}\right)$, where δ_{1} is described through the following table:

δ_{1}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}
a	q_{0}	q_{1}	q_{2}	q_{3}	q_{6}	q_{5}	q_{4}	q_{7}
b	q_{5}	q_{3}	q_{7}	q_{2}	q_{1}	q_{1}	q_{2}	q_{0}

(b) $A_{2}=\left(\{A, B, C, D, E, F\},\{a, b\}, \delta_{2}, F,\{F\}\right)$, where δ_{2} is described by the following table:

δ_{2}	A	B	C	D	E	F
a	A	B	C	D	E	F
b	F	A	D	B	C	E

(c) $A_{3}=\left(\left\{q_{1}, q_{2}, \ldots, q_{9}\right\},\{a, b\}, \delta_{1}, q_{1},\left\{q_{3}, q_{5}, q_{6}\right\}\right)$, where δ_{3} is described through the following table:

δ_{3}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
a	q_{2}	q_{2}	q_{3}	q_{2}	q_{6}	q_{6}	q_{7}	q_{2}	q_{9}
b	q_{3}	q_{4}	q_{5}	q_{7}	q_{3}	q_{6}	q_{4}	q_{3}	q_{4}

(d) $A_{4}=\left(\{A, B, C, D, E, F, G, H\},\{a, b\}, \delta_{4}, G,\{G\}\right)$, where δ_{4} is described by the following table:

δ_{4}	A	B	C	D	E	F	G	H
a	H	B	E	D	C	F	G	A
b	G	A	D	B	D	E	F	G

Problem 3.4 [Minimal DFA]

Use the algorithm "minimal automaton" to construct the minimal DFAs that are equivalent to the following DFAs:
(a) $B_{1}=\left(\left\{q_{1}, q_{2}, \ldots, q_{9}\right\},\{a, b\}, \delta_{1}, q_{1},\left\{q_{3}, q_{5}, q_{6}\right\}\right)$, where δ_{1} is described through the following table:

δ_{1}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
a	q_{2}	q_{2}	q_{3}	q_{2}	q_{6}	q_{6}	q_{7}	q_{2}	q_{9}
b	q_{3}	q_{4}	q_{5}	q_{7}	q_{3}	q_{6}	q_{4}	q_{3}	q_{4}

(b) $B_{2}=\left(\{A, B, C, D, E, F, G, H\},\{a, b\}, \delta_{2}, G,\{G\}\right)$, where δ_{2} is described by the following table:

δ_{2}	A	B	C	D	E	F	G	H
a	H	B	E	D	C	F	G	A
b	G	A	D	B	D	E	F	G

(c) $B_{3}=\left(\left\{q_{0}, q_{1}, \ldots, q_{5}\right\},\{a, b\}, \delta_{3}, q_{0},\left\{q_{0}\right\}\right)$, where δ_{3} is described through the following table:

δ_{3}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
a	q_{1}	q_{3}	q_{4}	q_{0}	q_{2}	q_{0}
b	q_{2}	q_{0}	q_{5}	q_{2}	q_{5}	q_{3}

