Automata and Grammars

SS 2018

Assignment 1: Solutions to Selected Problems

Seminary: Thursday, March 1, 2018.

Problem 1.1 (a)[Words]

Let Σ be a finite alphabet. Prove that the operation of concatenation $\cdot: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ is commutative if and only if Σ has cardinality one.

Solution. If $\Sigma=\{a\}$, then each word $x \in \Sigma^{*}$ can be written as $x=a^{m}$ for some $m \geq 0$. Hence, $x y=a^{m} a^{n}=a^{m+n}=a^{n+m}=a^{n} a^{m}=y x$ for all $x, y \in \Sigma^{*}$, which shows that in this situation the operation of concatenation is commutative.
Conversely, if $|\Sigma| \geq 2$, then let a and b be two different letters from Σ. Now consider the words $x=a$ and $y=b$. Then $x y=a b \neq b a=y x$, that is, in this case the operation of concatenation is not commutative.

Problem 1.1 (b)[Words]

Show that, for two words $u, v \in \Sigma^{*}, u v=v u$ if and only if there exist a word $x \in \Sigma^{*}$ and integers $k, l \geq 1$ such that $u=x^{k}$ and $v=x^{l}$.
Hint: Use induction on $|u|+|v|$.
Solution. If $|u|+|v| \leq 2$, then the result obviously holds. Assume that the result has already been shown to hold for all words u, v satifying $|u|+|v| \leq n$, and assume now that $|u|+|v|=n+1$. From the problem presented in the first seminary we see that $u=x y$, $v=(x y)^{k} x$, and $u=y x$ for some words $x, y \in \Sigma^{*}$ and an integer $k \geq 0$. Then $x y=u=y x$, and as $|x|+|y| \leq n$, the induction hypothesis yields that $x=r^{m}$ and $y=r^{n}$ for some word $r \in \Sigma^{*}$ and some integers $m, n \geq 0$. This, however, means that $u=x y=r^{m+n}$ and $v=(x y)^{k} x=r^{k \cdot(m+n)+m}$.

Problem 1.2. [Regular Grammars]
Construct regular grammars for at least three of the following languages:
(a) $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}\right.$ is divisible by 2$\}$,
(b) $L_{2}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}\right.$ is divisible by 2 and by 3$\}$,
(c) $L_{3}=\left\{w \in\{a, b\}^{*} \mid w=u a b a b\right.$ for some word $\left.u \in\{a, b\}^{*}\right\}$,
(d) $L_{4}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains the factor $\left.a b a b\right\}$,
(e) $L_{5}=\left\{w \in\{a, b\}^{*}| | w \mid=(3 k+1)\right.$ for some $k \geq 0$ or w ends with $\left.b\right\}$,
(f) $\quad L_{6}=\left\{w \in\{a, b\}^{*} \mid\right.$ The first and the last letter of w are identical $\}$.

Solution. (b) $G_{b}=\left(\{S, A, B, C, D, E\},\{a, b\}, P_{b}, S\right)$, where P_{b} contains the following productions:

$$
\begin{aligned}
& S \rightarrow b S, S \rightarrow a D, S \rightarrow \varepsilon \\
& A \rightarrow b A, A \rightarrow a E, B \rightarrow b B, B \rightarrow a C \\
& C \rightarrow b C, C \rightarrow a A, D \rightarrow b D, D \rightarrow a B \\
& E \rightarrow b E, E \rightarrow a S
\end{aligned}
$$

G_{b} is the product of two grammars G_{1} and G_{2}, where $S=\left(S_{1}, S_{2}\right), A=\left(S_{1}, A_{2}\right), B=$ $\left(S_{1}, B_{2}\right), C=\left(A_{1}, S_{2}\right), D=\left(A_{1}, A_{2}\right)$, and $\left.E_{(} A_{1}, B_{2}\right), P_{1}=\left\{S_{1} \rightarrow b S_{1}, S_{1} \rightarrow a A_{1}, S_{1} \rightarrow\right.$
$\left.\varepsilon, A_{1} \rightarrow b A_{1}, A_{1} \rightarrow a S_{1}\right\}$, and $P_{2}=\left\{S_{2} \rightarrow b S_{2}, S_{2} \rightarrow a A_{2}, S_{2} \rightarrow \varepsilon, A_{2} \rightarrow b A_{2}, A_{2} \rightarrow\right.$ $\left.a B_{2}, B_{2} \rightarrow b B_{2}, B_{2} \rightarrow a S_{2}\right\}$. Then $L\left(G_{1}\right)=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv 0 \bmod 2\right\}$ and $L\left(G_{2}\right)=$ $\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv 0 \bmod 3\right\}$. Hence, $L\left(G_{4}\right)=L\left(G_{1}\right) \cap L\left(G_{2}\right)=L_{4}$.
(f) $G_{f}=\left(\{S, A, B\},\{a, b\}, P_{f}, S\right)$, where P_{f} contains the following productions:

$$
S \rightarrow a, S \rightarrow b, S \rightarrow a A, S \rightarrow b B, A \rightarrow a A, A \rightarrow b A, A \rightarrow a, B \rightarrow a B, B \rightarrow b B, B \rightarrow b
$$

Then $L\left(G_{f}\right)=L_{6}$.

Problem 1.3. [Regular Grammars]
Determine the languages that are generated by the following regular grammars:
(a) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{ll}
S \rightarrow a a b A, & S \rightarrow b b a B \\
A \rightarrow a a b A, & A \rightarrow a a b \\
B \rightarrow b b a B, & B \rightarrow b b a
\end{array}
$$

(b) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{aligned}
& S \rightarrow a b A, \\
& A \rightarrow a b A, \quad A \rightarrow a b B, \\
& B \rightarrow b a B, \quad B \rightarrow b a
\end{aligned}
$$

(c) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{ll}
S \rightarrow S b, & S \rightarrow A a, \quad S \rightarrow \varepsilon, \\
A \rightarrow A b, & A \rightarrow B a, \\
B \rightarrow B b, & B \rightarrow S a
\end{array}
$$

Solution. The following solutions can be shown easily:

$$
\begin{aligned}
& (a) \quad L=\left\{(a a b)^{n} \mid n \geq 2\right\} \cup\left\{(b b a)^{n} \mid n \geq 2\right\} \\
& (b) L=\left\{(a b)^{m}(b a)^{n} \mid m \geq 2, n \geq 1\right\} \\
& (c) L=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \text { is divisible by } 3\right\}
\end{aligned}
$$

(a) A typical derivation in G looks as follows:

$$
S \quad \rightarrow_{G} \quad a a b A \quad \rightarrow_{G}^{n} \quad(a a b)^{n+1} A \rightarrow_{G} \quad(a a b)^{n+2}
$$

where $n \geq 0$, or

$$
S \quad \rightarrow_{G} \quad b b a B \quad \rightarrow_{G}^{n} \quad(b b a)^{n+1} B \quad \rightarrow_{G} \quad(b b a)^{n+2}
$$

where $n \geq 0$. It follows that $L(G)=\left\{(a a b)^{n},(b b a)^{n} \mid n \geq 2\right\}$.
(b) A derivation in G looks as follows:

$$
\begin{array}{rlllll}
S & \rightarrow_{G} & a b A & \rightarrow_{G}^{m} & (a b)^{m+1} A & \rightarrow_{G} \\
& \rightarrow_{G}^{n} & (a b)^{m+2}(b a)^{n} B & \rightarrow_{G}^{m+2} B & (a b)^{m+2}(b a)^{n+1}, & \\
&
\end{array}
$$

where $m, n \geq 0$. Hence, $L(G)=\left\{(a b)^{m}(b a)^{n} \mid m \geq 2, n \geq 1\right\}$.
(c) Here we can show that

$$
\begin{aligned}
L(G, S) & =\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv 0 \quad \bmod 3\right\} \\
L(G, A) & =\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv 2 \quad \bmod 3\right\}, \text { and } \\
L(G, B) & =\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv 1 \quad \bmod 3\right\}
\end{aligned}
$$

For the inclusions from left to right, this can be done by induction on the length of a derivation $X \rightarrow_{G}^{n} w \in\{a, b\}^{*}$, where $X \in\{S, A, B\}$. For the opposite direction this can be done by induction on the length of w.

