Automata and Grammars

SS 2018

Assignment 2

Solutions are to be presented at the Seminary on Thursday, March 8, 2018.

Problem 2.1. [Normal Form for Regular Grammars]

Determine a grammar in *right normal form* that generates the same language as the following grammar $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$, where P contains the following productions:

S	\rightarrow	aaA,	S	\rightarrow	bbB,	S	\rightarrow	C,
A	\rightarrow	aaA,	A	\rightarrow	B,			
В	\rightarrow	bbB,	B	\rightarrow	A,	B	\rightarrow	C,
C	\rightarrow	aaA,	C	\rightarrow	bbB,	C	\rightarrow	D,
D	\rightarrow	aaA,	D	\rightarrow	bbB,	D	\rightarrow	ε .

Hint: Use the construction from the proof of Theorem 2.5.

Problem 2.2 [Closure Properties for Regular Grammars]

Let $G_1 = (N_1, \Sigma, S_1, P_1)$ and $G_2 = (N_2, \Sigma, S_2, P_2)$ be two right regular grammars such that N_1 and N_2 are disjoint.

- 1. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cup L(G_2)$.
- 2. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cap L(G_2)$.
- 3. Construct a right regular grammar G from G_1 and G_2 such that $L(G) = L(G_1) \cdot L(G_2)$.
- 4. Construct a right regular grammar G from G_1 such that $L(G) = (L(G_1))^*$.

Hint: You may assume that the grammars G_1 and G_2 are in right normal form.

Problem 2.3 [DFAs]

Construct deterministic finite-state automata for at least three of the following languages:

 $\begin{array}{rcl} L_1 &=& \{w \in \{a, b\}^* \mid |w|_a \text{ is divisible by 2 or 3} \}, \\ L_2 &=& \{w \in \{a, b\}^* \mid |w|_a \text{ is divisible by 3, but not by 2} \}, \\ L_3 &=& \{w \in \{a, b\}^* \mid w = uabab \text{ for some word } u \in \{a, b\}^* \}, \\ L_4 &=& \{w \in \{a, b\}^* \mid w = ababu \text{ for some word } u \in \{a, b\}^* \}, \\ L_5 &=& \{w \in \{a, b\}^* \mid |w| = (3k+1) \text{ for some } k \ge 0 \text{ or } w \text{ ends with } b \}, \\ L_6 &=& \{w \in \{a, b\}^* \mid \text{The first and the last letter of } w \text{ are identical } \}. \end{array}$

Problem 2.4 [DFAs]

Determine the languages that are accepted by the following deterministic finite-state automata $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, F)$, where δ and F are defined as follows:

(a)	F	=	$\{q_1, q_2\}$	and	$\delta:$	$\begin{array}{c} q_0 \\ q_1 \\ q_2 \end{array}$	$\begin{array}{c} 0 \\ q_1 \\ q_2 \\ q_0 \end{array}$	$egin{array}{c} 1 \\ q_0 \\ q_1 \\ q_2 \end{array}$,
(b)	F	=	$\{q_2\}$	and	δ :	$egin{array}{c} q_0 \ q_1 \ q_2 \end{array}$	$\begin{array}{c} 0 \\ q_0 \\ q_0 \\ q_0 \end{array}$	$\begin{array}{c} 1 \\ q_1 \\ q_2 \\ q_2 \\ q_2 \end{array}$,
(c)	F	=	$\{q_1,q_2\}$	and	$\delta:$	$\begin{array}{c} q_0 \\ q_1 \\ q_2 \end{array}$	$\begin{array}{c} 0 \\ q_0 \\ q_2 \\ q_0 \end{array}$	$egin{array}{c} 1 \\ q_1 \\ q_1 \\ q_1 \\ q_1 \end{array}$	