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CHAPTER

18

Often a public or nonprofit manager wants to know whether two 
 interval-level variables are related. Interval-level data are variables that 
have a well-defined (equal) interval or unit of measurement, such as 

money (for example, dollars), time (for example, years), distance (for example, 
miles), or countable quantities or occasions (for example, number of volunteers 
or number of computer mouse clicks needed to make a donation on a nonprofi t 
Website). In general, an analyst should not use ordinal- or nominal-level tech-
niques, such as those discussed in Chapters 15 through17, on interval-level data. 
Treating interval information as ordinal loses much of the information that the 
data contain. Collapsing interval data to present simple tables can be useful for 
simple reports and memoranda. However, an analyst should not take interval 
data (such as number of cars, revenue, highway speeds, hours volunteered, money 
donated, grant applications submitted, or crime rates) and collapse them into 
categories for analysis purposes. 

A variety of public and nonprofi t management problems can be interpreted 
as relationships between two interval variables. For example, the director of the 
highway patrol might want to know whether the average speed of motorists on 
a stretch of highway is related to the number of patrol cars on that stretch of 
highway. Knowing this information would allow the director to decide rationally 
whether or not to increase the number of patrol cars. In other situations, the 
public manager might want to know the relationship between two variables for 
prediction purposes. For example, a northeastern state is considering a sales tax 
on beer and would like to know how much revenue the tax would raise in the 
state. An analyst’s strategy might be to see whether a relationship exists between a 
state’s population and its tax revenues from beer sales. If a relationship is found, 
the analyst could then use the state’s population to predict its potential revenue 
from a beer sales tax. Similarly, Habitat for Humanity might be interested in 
knowing if weather conditions (measured by inches of rainfall and so on) aff ect 
the number of construction volunteers.

Th is chapter presents an introduction to simple linear regression, a statisti-
cal technique to determine the relationship between two interval-level variables. 
Subsequent chapters build on this foundation.

Introduction to 
Regression Analysis
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324  Chapter 18 Introduction to Regression Analysis

Relationships between Variables
Relationships between two variables can be classifi ed in two ways: as causal or pre-
dictive and as functional or statistical. In our fi rst example, the relationship between 
police cars on the road and motorists’ average speed, we have a causal  relationship. 
Th e implicit hypothesis is that increasing the number of patrol cars on the road 
will reduce average speeds. In the beer sales tax example, a state’s  population will 
predict, or determine, tax revenues from beer sales. Th e  variable that is predicted, 
or is caused, is referred to as the dependent variable (this  variable is usually called 
Y ). Th e variable that is used to predict, or is the cause of, change in another vari-
able is referred to as the independent variable (this variable is  usually called X ).

In the following examples, determine which variable is the dependent  variable 
and which is the independent variable:

A police chief believes that increasing expenditures for police will reduce crime.
independent variable 
dependent variable 

A librarian believes that circulation is related to advertising.
independent variable
dependent variable 

MPA candidates who complete the nonprofi t concentration perform better 
as summer interns in nonprofi t agencies.

independent variable
dependent variable 

Th e number of volunteers is aff ected by the weather.
independent variable
dependent variable 

If you said the dependent variables were crime, circulation, good performance, 
and number of volunteers, congratulations.

Relationships may also be functional or statistical. A functional relation-
ship is a relationship in which one variable (Y ) is a direct function of another 
(X ). For example, Russell Th omas, the longtime head of the city motor pool, 
 believes that there is some type of relationship between the number of cars he 
sends over to Marquette’s Tune-Up Shop for tune-ups and the amount of the bill 
that he receives from Marquette’s. Russell fi nds the information in Table 18.1 for 
the last fi ve transactions with Marquette’s.

Russell knows the fi rst step in determining whether two variables are related 
is to graph the two variables. When graphing two variables, the independent 
variable (X ) is always graphed along the bottom horizontally, and the depen-
dent variable (Y ) is always graphed along the side vertically. See Figure 18.1.

On the axes presented in Figure 18.2, graph the points representing the two 
variables.
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Table 18.1 Data from Marquette’s

Number of Cars Amount of Bill

2 $ 192
1 96
5 480
4 384
2 192

Figure 18.1 The Horizontal Axis Is for X
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Figure 18.2 Graph Data Here
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326  Chapter 18 Introduction to Regression Analysis

If you look carefully at the points you graphed in Figure 18.2, you will see 
that they fall without any deviation along a single line. Th is is a characteristic of a 
functional relationship. If someone knows the value of the independent variable, 
the value of the dependent variable can be predicted exactly. In the preceding 
example, Marquette’s charges the city $96 to tune a car, so the bill is simply $96 
times the number of cars.

Unfortunately, very few of the important relationships that public or 
 nonprofi t managers must consider are functional. Most relationships are statisti-
cal. In a statistical relationship, knowing the value of the independent variable 
lets us estimate a value for the dependent variable, but the estimate is not exact. 
One process of determining the exact nature of a statistical relationship is called 
regression. We will illustrate how regression can be used to describe relationships 
with an example.

Th e Normal, Oklahoma, traffi  c commissioner believes that the average speed 
of motorists along Highway 35 within the city limits is related to the number 
of police cars patrolling that stretch. Average speed is measured by a stationary, 
unmanned radar gun. Th e experiment spans 2 months, with measurements taken 
daily. For a sample of 5 days, the results of the commissioner’s experiment are as 
shown in Table 18.2.

Th e fi rst step in determining whether a relationship exists is to plot the data 
on a graph. Plot the given data on the graph in Figure 18.2. After the data are 
plotted, the analyst can eyeball the data to see whether there is a relationship be-
tween the number of cars and the average speed. Th e graph of the data is shown 
in Figure 18.3.

Clearly, the graph shows a relationship between the number of police cars on 
this highway and the motorists’ average speed: Th e more cars on the highway, the 
lower the average speed. Th is is termed a negative relationship because the depen-
dent variable (speed) decreases as the independent variable increases. A negative 
relationship could be stated equally well that the dependent variable increases as 
the independent variable decreases (see Chapter 3). 

Our hypothetical situation in which state population is compared with sales 
tax revenues from beer sales illustrates a positive relationship (see Table 18.3).

Table 18.2 Commissioner’s Data

Number of Police Cars Average Speed of Motorists

3 64
1 71
4 61
5 58
7 56
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Th e graph of these data is shown in Figure 18.4. From the graph, we see that 
as states’ populations increase, so do the states’ sales tax revenues from beer sales. 
Because both variables increase (or decrease) at the same time, the relationship is 
positive (see Chapter 3).

In many cases (far too many, for most managers), no relationship exists 
 between the two variables. In Table 18.4, the number of police cars patrolling 
the streets of Normal, Oklahoma, is contrasted with the number of arrests for 
 indecent exposure in Kansas City, Missouri.

A note of explanation is in order. On Wednesday, a regional public adminis-
tration conference opened in Kansas City. Suspects are held for 24 hours, which 
also explains the Friday fi gures. Most of the Saturday incidents occurred at the 
airport.

Table 18.3 Relationship between Tax Revenues and Population

State Population (Millions) Beer Revenue (Millions)

Pennsylvania 12.4 146
Tennessee  6.1  85
Nevada  2.4  21
Louisiana  4.3  47
North Carolina  9.5 115
Virginia  7.6  90

Figure 18.3 Graph of Traffi c Speed Data
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328  Chapter 18 Introduction to Regression Analysis

Th e data are graphed in Figure 18.5. Clearly, no relationship exists between 
the number of police cars patrolling the streets of Normal and arrests for  indecent 
exposure in Kansas City.

Ode to Eyeballing
When an analyst has only a few data points, the relationship between two 
 variables can be determined visually. When the data sets become fairly large, 
however, eyeballing a relationship is extremely inaccurate. Statistics are needed 
that summarize the relationship between two variables. One variable, of course, 
can be summarized by a set of single fi gures—say, the mean and the standard 
 deviation. Th e relationship between two variables can be summarized by a line.

Table 18.4 Patrol Cars and Number of Arrests

Day
Cars on Patrol 

in Normal
Arrests for Indecent 

Exposure in Kansas City

Monday 2 27
Tuesday 3 12
Wednesday 3 57
Th ursday 7 28
Friday 1 66
Saturday 6 60

Figure 18.4 Relationship between Population and Tax Revenue
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Figure 18.5 Relationship between Number of Patrol Cars and Indecent 
Exposure Arrests
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Figure 18.6 Straight Line for Data of Table 18.2
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For our example of cars patrolling a stretch of Highway 35 and the  average 
speed of traffi  c on that portion of highway, a straight line can be drawn that 
represents the relationship between the data (see Figure 18.6). Th e line  generally 
follows the pattern of the data, sloping downward and to the right.

Any line can be described by two numbers, and the line describing 
the  relationship between two variables is no exception. Lines a, b, and c in 
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Figure 18.7 diff er from each other in terms of how steeply the lines slant 
from left to right.

Th e slant of a line is referred to as its slope. Th e slope of any line is defi ned to 
be how much the line rises or falls relative to the distance it travels horizontally. 
Symbolically,

b 5
DY
DX

where b (Greek letter beta) is the slope of a line, DY  (Greek letter delta) is the 
change in the Y (dependent) variable, and DX  is the change in the X (indepen-
dent) variable.

Another way to express this formula is to say that the slope of a line is equal to 
the ratio of the change in Y for a given change in X (rise over run, for you  geometry 
buff s). Th e graph in Figure 18.8 shows the slopes of several  hypothetical lines.

The second number used to describe a line is the point where the line 
 intersects the Y-axis (called the intercept). Th e graph in Figure 18.9 shows several 
lines with the same slopes but with diff erent intercepts. Th e intercept, referred to 
as a (Greek letter alpha) by statisticians, is the value of the dependent variable 
when the independent variable is equal to zero.

Any line can be fully described by its slope and its intercept:
Y 5 a 1 bX

A line describing the relationship between two variables is represented by

Ŷ 5 a 1 bX

Figure 18.7 The Lines Differ in Their Slopes
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Ŷ  is a statistician’s symbol for the predicted value of Y (called “Y hat”). Ŷ  for 
any value of X is a function of the intercept 1a 2  and the slope 1b 2 , and it may or 
may not be equal to the actual value of Y.

To illustrate, let us return to our example of traffi  c speeds and patrol cars. Th e 
line drawn through the data in Figure 18.10 represents the relationship  between 
the two variables. If we had only the line, what could we say about the expected 
average speed if three cars were on the road? Ŷ , the expected speed, is 65 miles 

Figure 18.8 Several Different Slopes
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Figure 18.9 The Lines Have the Same Slope but Different Intercepts
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per hour. (To fi nd this number, draw a line straight up from the three-cars point 
to the relationship line. From the point where your line touches the relationship 
line, draw a line parallel to the X-axis to the traffi  c speed Y-axis line. Your line 
should touch the Y-axis at 65. Th is value is Ŷ .)

Note that the actual value of Y on the one day when three cars were on the 
road is 64 miles per hour. Th is fact illustrates the following:

predicted value of Y 5 real value of Y 1 some error

Ŷi 5 Yi 1 ei

or

  ei 5 1 Ŷi 2 Yi 2
Another way of expressing these equations is to say that every value of Y is equal 
to some predicted value of Y based on X plus some error.*

Linear Regression
Th e pitfall of just drawing in a line to summarize a relationship is that numerous 
lines will look as if they summarize the relationship between two variables equally 
well. Statisticians have agreed that the best line to use to describe a relationship is 

Figure 18.10 Straight Line for Data of Table 18.2
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*We assume that error can be either negative or positive, so it does not matter whether error is 
added to Ŷ  i (or Yi) or subtracted from Ŷ  i (or Ŷ  i).
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the line that minimizes the squared errors about it—that is, the line that makes 
the sum of all 1Ŷi 2 Yi 2 2 the smallest possible number. Th is form of regression 
(or fi tting a line to data) is called ordinary least squares, or you may call it just 
linear regression.

Linear regression using the principle of minimizing squared errors allows us 
to fi nd one value of a and one value of b so that a unique regression line of the 
form Ŷ 5 a 1 bX  can be determined. Th e calculations necessary to fi nd a and b 
will be illustrated with an example.

Before considering the example, we should note that regression is a technique 
that is often used to make inferences from a sample to a population. Similar to 
other situations of inference, slightly diff erent symbols are used. For a population 
regression, a line is denoted as

Y 5 a 1 bX 1 P

Sometimes, rather than simply using Y, statisticians use the symbol my|x,, which 
stands for the mean of y given x, or the mean value of y given the use of x to try 
to predict y. Th e population intercept is denoted a and the slope b. Th e symbol 
P represents an error term meant to capture any errors in prediction. In statis-
tics we rarely work with populations but rather with samples. In that case, the 
 symbols are

Y 5  a 1 bX 1 e

Th e sample intercept is represented by the symbol a, the slope by b, and the  error 
term by e. Similar to the case with means, the best estimate of the population 
slope and intercept are the sample slope and intercept.

Th rough some heavy mathematics based on calculus, statisticians have found 
that the formula for the slope b is as follows:

b 5
S 1Xi 2 X 2 1Yi 2 Y 2

S 1Xi 2 X 2 2
Taken a piece at a time, this formula is not as intimidating as it looks. We will use 
the data on police cars and average speed to calculate b (see Table 18.5).

Table 18.5 Relationship between Police Cars and Average Speed

Number of Police Cars (X) Average Speed (Y)

3 64
1 71
4 61
5 58
7 56
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Step 1: Calculate the mean for both the dependent variable (Y) and the inde-
pendent variable (X). If you have forgotten how to calculate a mean, 
please refer to Chapter 5. Th e mean for Y is 62, and the mean for X is 4.

Step 2: Subtract the mean of the dependent variable from each value of the 
 dependent variable, yielding 1Yi 2 Y 2 . Do the same for the  independent 
variable, yielding 1Xi 2 X 2 .

Xi 2 X   Yi 2 Y

3 2 4 5 21 64 2 62 5  2
1 2 24 5 23 71 2 62 5  9
4 2 4 5 0 61 2 62 5  –1
5 2 4 5 1 58 2 62 5 24
7 2 4 5 3 56 2 62 5 26

Step 3: Multiply 1Yi 2 Y 2  times 1Xi 2 X 2 . Th at is, multiply the value that you 
get when you subtract the mean Y from Yi by the value you get when 
you subtract the mean X from Xi.1Xi 2 X 2  3 1Yi 2 Y 2

21 3 2 5 22
23 3 9 5 227

0 3 21 5 0
1 3 24 5 24
3 3 26 5 218

Step 4: Sum all the values of 1Yi 2 Y 2 1Xi 2 X 2 . You should get a sum of 251. 
Th is is the numerator of the formula for b.

Step 5: Use the 1Xi 2 X 2  column in Step 3, and square each of the values found 
in the column. 1Xi 2 X 2 1Xi 2 X 22

–1 1
–3 9
 0 0
 1 1
 3 9

Step 6: Sum the squared values of 1Xi 2 X 2 . Th e answer is 20.
Step 7: Divide S 1Yi 2 Y 2 1Xi 2 X 2  or –51, by S 1Xi 2 X 2 2, or 20. Th is number 

22.55 is the slope.
Th e intercept is much easier to calculate. Statisticians have discovered that

a 5 my 2 bmx

or
a 5 Y 2 bX
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Substituting in the values of 62, 22.55, and 4 for Y , b, and X , respectively, 
we fi nd

a 5 622 122.55 2 3 4 5 622 1210.2 2 5 62 1 10.2 5 72.2

Th e regression equation that describes the relationship between the number of 
patrol cars on a stretch of Highway 35 and the average speed of motorists on that 
stretch of highway is

Ŷ 5 72.2 2 2.55X

All sample regressions are of the general form

Ŷ 5  a 1  bX

In English, the predicted value of Y 1 Ŷ 2  is equal to X times the slope (b) plus 
the intercept (a). Th e slope and the intercept can be positive or negative. In the 
present example the intercept is positive (72.2) and indicates that if there are no 
patrol cars on a stretch of Highway 35, the average expected speed of motorists is 
72.2. Th e slope is negative 122.55 2  and indicates that for every patrol car on the 
road, the average speed of motorists is expected to decrease by 2.55. 

Some Applications
Th e regression equation provides a wealth of information. Suppose the traffi  c 
commissioner wants to know the estimated average speed of traffi  c if six patrol 
cars are placed on duty. Another way of stating this question is, What is the value 
of Ŷ  (the estimated average speed) if the value of X (the number of cars) is 6? 
 Using the formula

Ŷ 5  72.2 2 2.55X

substitute 6 for X to obtain

Ŷ 5  72.2 2 2.55 3  6 5  72.2 2 15.3 5  56.9

Th e best estimate of the average speed for all cars on a stretch of Highway 35 is 
56.9 if six patrol cars are placed on that stretch.

How much would the mean speed for all cars decrease if one additional 
patrol car were added? The answer is 2.55 miles per hour. The regression 
 coeffi  cient is the ratio of change in Ŷ  to the change in X. Where the change in X 
is 1 (car), the change in Ŷ  is 22.55 (miles per hour). In a management situation, 
this is how the slope should be interpreted. It is how much Ŷ  will change if X 
is changed  (increased) 1 unit. Remember, though, that the regression line gives 
estimates, and there is error (e) in predicting actual Y scores.

What would the average speed be if no patrol cars were on the road? 
 Substituting 0 into the regression equation for X, we fi nd

Ŷ 5 72.2 2 2.55X 5 72.2 2 2.55 10 2  5 72.2
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Table 18.6 Relationship between Tax Revenues and Population

Population, X (millions) Beer Revenue, Y (millions)

12.4 146
 6.1  85
 2.4  21
 4.3  47
 9.5 115
 7.6  90

X 5   Y 5

Xi 2 X  1Xi 2 X 2 2 Yi 2 Y
  

12.42 5   1462 5

 6.12 5   852 5

 2.42 5   212 5

 4.32 5   472 5

 9.52 5   1152 5

 7.62 5   902 51Xi 2 X 2 3 1Yi 2 Y 2
  

 3  5 

 3  5 

 3  5 

 3  5 

 3  5 

 3  5 

When X is 0, the value of Ŷ  is 72.2, or the intercept. Th e intercept is defi ned as 
the value of Ŷ  when X is equal to zero.

An Example
Most analysts rely on computer programs to calculate regression equations. We 
expect that you will do so, too. However, just for practice, we ask you to calculate 
the regression equation for the population and beer sales tax example. Recall that 
for six states, the data are as given in Table 18.6. In the space provided, calculate 
the slope and the intercept of the regression line.
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S 1Xi 2 X 2 1Yi 2 Y 2 5

    S 1Xi 2 X 2 2 5 

                 b 5
S 1Xi 2 X 2 1Yi 2 Y 2

S 1Xi 2 X 2 2 5

             a 5 Y 2 bX  5  

Th e answer to this exercise is presented at the end of the chapter, following 
the problems.

What would be the best estimate of Colorado’s beer sales tax revenue if it had 
such a tax and had 5.5 million people?

Measures of Goodness of Fit
Any relationship between two variables can be summarized by linear regression. 
A regression line per se, however, does not tell us how well the regression line sum-
marizes the data. To illustrate, the two sets of data in Figure 18.11 can both be 
summarized with the same regression line. In the graph of part (b), however, the 
data points cluster closely about the line; in the graph of part (a), the data points 
are much farther from the line. We can say that the regression line of (b) fi ts the 
data better than does the regression line of (a), even though the “best-fi tting” 
 regression line for the data in both Figures 18.11(a) and 18.11(b) is the same.

Th e distance a point is from the regression line is referred to as error. Recall 
that the regression line gives the value of Ŷi, whereas the data point represents 

Figure 18.11 Differences in Goodness of Fit
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Yi. In the following sections, we will discuss various ways that statisticians have 
devised to measure the goodness of fi t of the regression line to the data. All these 
methods are based on the error.

Error in the context of regression analysis means unexplained variance (i.e., 
spread or dispersion in the values of Y that cannot be accounted for or “explained” 
by changes in X). A regression equation will almost always have some error, so 
trying to eliminate error entirely is not realistic. What are some of the causes of 
error in a regression equation?

First, a single independent variable rarely accounts for all of the variation 
in a dependent variable. For example, the unemployment rate might explain a 
substantial portion of the variation in demand for services at a local food bank, 
but other variables, including higher retail food prices and climate (such as cold 
weather), might also account for some of the variation in demand. Data values 
will not fall perfectly along a regression line if the independent variable explains 
only some of the variation in the dependent variable. Th is is why analysts often 
perform regression with several independent variables (“multiple regression”), a 
subject covered in Chapter 21.

Second, individual cases within our data do not always conform to the  overall 
relationships we fi nd when using regression analysis. For example, if most  drivers 
slow down when the number of police cars on patrol goes up, a small  number 
of drivers may throw caution to the wind and continue traveling at a high rate 
of speed. Even when a regression equation reveals a relationship between an 
 independent and a dependent variable, deviations from the general pattern for 
individual cases are almost always inevitable.

Th ird, almost always our measurements of important variables in public and 
nonprofi t administration contain error. Measuring such concepts as organiza-
tion eff ectiveness and mission salience is very diffi  cult. Th e presence of error in 
 measurement contributes to errors in the regression equation. Fourth, variables 
may be related but not in a linear fashion; we look at curvilinear regression in 
Chapter 21. Estimating a linear regression when the relationship is curvilinear 
will generate substantial error.

The Standard Error of the Estimate
Statisticians commonly use three measures of fi t in regression analysis. Th e fi rst, 
called the residual variation, or the variance of the estimate, is equal to the sum 
of the squared error divided by n 2  2. Symbolically,

S2
y|x 5

S 1Yi 2 Ŷi 2 2
n 2 2

Sy|x
2  is called the residual variance of Y given X.

Another way of stating what Sy|x
2  represents is to call it the average squared 

 error of the regression estimates. Although the residual variation is rarely used as 
a measure of fi t, its square root 1Sy|x 2  is. Th is measure, called the standard  error 
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of the estimate (or sometimes root mean square error), is an estimate of the 
variation in Ŷ, the predicted value of Y. Th e standard error of the estimate can be 
used to place confi dence intervals around an estimate that is based on a regres-
sion equation.

To illustrate the utility of this measure of fi t of the regression line, we need 
to calculate the residual variance for a set of data. We will use the police cars and 
speed data of  Table 18.5. In the worked-out example presented earlier, we found 
that the number of patrol cars on the highway was related to the average speed of 
all cars and that

X 5  4  Y 5  62  Ŷ 5  72.2 2 2.55X

To calculate the residual variation, follow these steps:

Step 1: Using the values of X and the regression equation, calculate a Ŷ  value 
for every X value.

 X 3  b Xb 1 a 5 Ŷ

3 3 22.55   27.65 1 72.2 5 64.6
1 3 22.55   22.55 1 72.2 5 69.7
4 3 22.55   210.2 1 72.2 5 62.0
5 3 22.55 212.75 1 72.2 5 59.5
7 3 22.55 217.85 1 72.2 5 54.4

Step 2: Using the Ŷ  values and the Y values, calculate the total error for each 
value of Y.

 Y 2 Ŷ

64 2 64.6 5 20.6
71 2 69.7 5   1.3
61 2 62.0 5 21.0
58 2 59.5 5 21.5
56 2 54.4 5 21.6

Step 3: Square the errors found in Step 2, and then sum these squares.1Y 2 Ŷ 22
.36

⎫
⎪
⎪
⎬
⎪ 
⎭

S 1Y 2 Ŷ 2 2 5 7.86
1.69
1.00
2.25
2.56

Step 4: Divide the sum of the squared errors by n – 2 to fi nd the residual varia-
tion (or average squared error).

Sy|x
2 5

7.86
3

5 2.62
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340  Chapter 18 Introduction to Regression Analysis

Step 5: Take the square root of this number to fi nd the standard error of the 
estimate.

Sy|x 5 !2.62 5 1.62

Th e standard error of the estimate may be interpreted as the amount of error that 
one makes when predicting a value of Y for a given value of X. Th e standard error 
of the estimate, however, applies only to predicting error at the exact middle of 
the distribution [that is, where X is equal to the mean of X; for a good explana-
tion of why this is true, see Gujarati and Porter (2008), Chapter 5]. To predict 
a confi dence limit around any single point, the following transformation of the 
standard error of the estimate is used:

Sy|x 3 Å1 1
1
n 1

1X0 2 X 2 21n 2 1 2Sx
2

where X0 is the value of X being predicted, X  is the mean of X, Sx is the standard 
deviation of X, and n is the sample size. Confi dence limits can be placed around 
any predicted value of Y by using the following formula:

Y 6 t 3 Sy|xÅ1 1
1
n 1

1X0 2 X 2 21n 2 1 2Sx
2

where t is the t score associated with whatever confi dence limits are desired.
Suppose the highway commissioner wanted to predict the average speed of 

all cars when three patrol cars were on the road. Using the regression equation, 
he would fi nd

Y 5  72.2 2 2.55 13 2  5 72.2 2  7.65 5 64.55

Th is estimate of the average speed is not exact; it can be in error by a certain 
amount. To put 90% confi dence limits around this estimate (64.55), we need 
to know the t score associated with 90% confi dence limits. Simple (bivariate) 
regressions have n 2 2 degrees of freedom, so we check Table 3 in the Statistical 
Tables for the .05 level (.05 1 .05 5 .10) with 3 degrees of freedom and fi nd 
the value 2.35. Because we already know the value of x (it is 3), all we need is the 
standard deviation of x to do the calculations. Th at value is 2.23 (you need not 
believe us—you can calculate this yourself from the raw data). Th us the formula 
reduces to

64.55 6 12.35 3 1.62 2 3 "1.00 1 11/5 2 1 3 13 2 4 2 2/ 15 2 1 2 12.23 2 2 4
64.55 6          3.81 3 "1.00 1 .2 1 .05
64.55 6          3.81 3 !1.25
64.55 6          3.81 3 1.12
64.55 6         4.27
60.28 to 68.82
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We can be 90% sure that the mean speed of all cars (when three patrol cars are on 
the road) is between 60.28 and 68.82 miles per hour.

The Coeffi cient of Determination
Th e second goodness of fi t measure adjusts for the total variation in Y. Th is mea-
sure, the coeffi  cient of determination, is the ratio of the explained variation to the 
total variation in Y. Explained variation is nothing more than the total variation 
in the dependent variable minus the error variation. Statisticians have defi ned the 
ratio of explained to unexplained variation as equal to

r2 5
S 1Ŷi 2 Y 2 2
S 1Yi 2 Y 2 2

Th is measure is called the coeffi  cient of determination, or r2. In bivariate (one 
independent variable) regression, we use r2. In multiple (more than one indepen-
dent variable) regression, the symbol R2 is used (see Chapter 21). Th e coeffi  cient 
of determination ranges from zero (the data do not fi t the line at all) to one (the 
data fi t the line perfectly).

Th e best way to interpret the coeffi  cient of determination is as follows. If 
someone wanted you to guess the next value of Y but gave you no information, 
your best guess as to what Y is would be Y , the mean. Th e amount of error in 
this guess would be 1Yj 2 Y 2 . Th e total squared error for several guesses of Y 
would be S 1Yi 2 Y 2 2. If someone asked you to guess the next value of Y and gave 
you both the corresponding value of X and a regression equation, your best guess 
as to the value of Yj would be Ŷj. How much of an improvement would Ŷ be over 
just guessing the mean? Obviously, it is 1 Ŷj 2 Y 2 , or the diff erence between the 
estimated value of Yj (or Ŷj) and the mean. Th e total improvement in squared 
 error for several guesses would be S 1Yi 2 Y 2 2. As you can tell, the coeffi  cient 
of determination is the ratio of the reduction of the error by using the regression 
line to the total error by guessing the mean. Figure 18.12 shows the improve-
ment in prediction achieved by using Ŷi rather than Y  to predict Yj. Th e improve-
ment in prediction is essential to calculating the coeffi  cient of determination.

To calculate the coeffi  cient of determination, follow these steps:
Step 1: Using the regression equation and each value of X, estimate a predicted value 

of Y 1 Ŷ 2 . Such estimates were just made in the previous example; they are

X Ŷ

3 64.6
1 69.7
4 62.0
5 59.5
7 54.4
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Step 2: From each value of Ŷ, subtract the mean value of Y (in this case, 62), 
and square these diff erences.

  Ŷ 2 Y  5 1 Ŷ 2 Y 2 1Ŷ 2  Y 22
64.6 2 62 5 2.6 6.8
69.7 2 62 5 7.7 59.3
62.0 2 62 5 .0 .0
59.5 2 62 5 22.5 6.3
54.4 2 62 5 27.6 57.8

Step 3: Sum these squared diff erences to fi nd the numerator of the coeffi  cient 
of determination. In this case, the answer is 130.2.

Step 4: Subtract the mean value of Y from the individual values of Y, and square 
these diff erences.

  Y 2 Y   5 1Y 2 Y 2 1Ŷ 2  Y 22
64 2 62 5 2  4
71 2 62 5 9 81
61 2 62 5 21  1
58 2 62 5 24 16
56 2 62 5 26 36

Step 5: Sum these squared diff erences to get the denominator of the coeffi  cient 
of determination. Th e answer is 138.

Figure 18.12 Coeffi cient of Determination

 Xi  X

Actual Yi

Predicted Ŷi

Error in
prediction:
Yi Ŷi

Total 
Variation 
in Y:
Yi Y

Ŷi 
a bX i

Mean Y

Improvement
in prediction:
Ŷi Y

Y
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Step 6: To fi nd the coeffi  cient of determination, divide the value found in Step 3 
by the value found in Step 5.

r2 5
130.2
138

5 .94

To interpret the coefficient of determination, we can say that the number of 
 patrol cars on a stretch of Highway 35 can explain 94% of the variance in the 
average speed of cars on that stretch of highway.

The square root of the coefficient of determination is called the cor-
relation coefficient, or r. The value of r ranges from –1.0 for perfect nega-
tive correlation to 11.0 for perfect positive correlation. Despite its frequent 
use in many academic disciplines, the correlation coefficient has no inherent 
value because it is difficult to interpret. The coefficient of determination is 
far more useful.

The Standard Error of the Slope
Th e third measure of goodness of fi t is the standard error of the slope. If we 
took several samples with an independent and a dependent variable and cal-
culated a regression slope (b) for each sample, the sample slopes would vary 
somewhat. Th e standard deviation of these slope estimates is called the stan-
dard error of the slope estimate. Th e formula for the standard error of the 
slope estimate is

sb 5
Sy|x"S 1Xi 2 X 2 2

Th e standard error of the slope can be used in the same manner as other standard 
errors—to place a confi dence interval around the slope estimate. Th e standard 
error of the slope estimate is calculated as follows:
Step 1: Calculate Sy|x, the standard error of the estimate. You will fi nd that 

Sy|x for the data we have been considering (see Table 18.1) is equal 
to 1.62.

Step 2: From each value of X, subtract the value of X , and square these 
diff erences.

X 2 X 5 1X 2 X 2 1X 2 X 22
3 2 4 5 21 1
1 2 4 5 23 9
1 2 4 5 0 0
4 2 4 5 1 1
7 2 4 5 3 9

Step 3: Sum all the squared diff erences: S 1Xi 2 X 2 2 5 20.
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344  Chapter 18 Introduction to Regression Analysis

Step 4: Take the square root of the number found in Step 3: !20 = 4.47.
Step 5: Divide the standard error of the estimate (1.62) by the number found 

in Step 4 to get the standard error of the slope estimate.

sb 5
1.62
4.47

5 .36

Th e standard error of the slope estimate can be used just like any other standard 
error. We can place 90% confi dence limits around the slope estimate. Th e proce-
dure for using the sample slope to place a 90% confi dence limit around the slope 
estimate is

 b 6 t 3 sb 1df 5 3 2
 22.55 6 2.65 3 .36
 22.55 6 .85

   23.40 to 21.70

We can be 90% sure that the population slope falls between 21.70 and 23.40.
Th e standard error of the slope can also be used to answer the following ques-

tion: What is the probability that one could draw a sample with a slope equal to 
the value of b obtained in a regression equation if the slope in the population 
equals zero? Th is is called testing the statistical signifi cance of the slope. If b 5  0, 
then there is no relationship between the variables in the population. If it is prob-
able that the sample was drawn from such a population, we could not reject the 
null hypothesis that no relationship exists between the independent variable and 
the dependent variable.

To determine the probability in our example that a sample with a slope 
of –2.55 could have been drawn from a population where b 5  0, we con-
vert b into a t score by using 0 as the mean and by using the standard error of 
the slope

t 5
X 2 m

s

t 5
b 2 b

sb
5

22.55 2 0
.36

5 27.1

A t value of 7.1 with 3 degrees of freedom is greater than the value for .005 1 t 5  5.841 2 . Th e probability that a sample with a slope of 22.55 could have 
been drawn from a population with a slope of zero is less than .005. If there are 
no major research design problems (and there appear to be none here), the public 
or nonprofi t manager would be justifi ed in concluding that a relationship exists. 
(Research design is the subject of Chapter 3.)

Sometimes the entire population is used to calculate a regression line (for 
example, an analysis based on all 50 U.S. states). In such cases, the preceding 
 exercise of testing for statistical significance does not make theoretical sense 

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Chapter Summary  345

 because these procedures assume that only a sample of the data are available. 
Many analysts test for statistical signifi cance anyway to illustrate that the rela-
tionship is not trivial, or that it is very unlikely to occur by chance (i.e., the inde-
pendent variable and the dependent variable are actually related). 

Although you may not immediately see a link between the standard error of 
the slope and the coeffi  cient of determination, the two are closely related. Th ink 
about why this is the case. Th e coeffi  cient of determination reveals the amount 
of variation in the dependent variable that is explained by the independent vari-
able. When we test the statistical signifi cance of the slope and are unable to reject 
the null hypothesis 1b 5  0 2 , the amount of variation in the dependent variable 
explained by the independent variable is typically small. In contrast, when we are 
able to reject the null hypothesis 1b 5  0 2 , the coeffi  cient of determination will 
be larger, because the independent variable does indeed explain variation in the 
dependent variable.

To illustrate this point, we will perform a regression using the data in Table 
18.4. Recall that when we graphed these data, we found no evidence of a rela-
tionship between the number of police cars on patrol in Normal, Oklahoma, and 
arrests for indecent exposure in Kansas City, Missouri.

Ŷ 5 4.24 2 .0138X
sb 5 .0541    r2 5 .017

t 5
2.0138 2 0

.0541
5 .26

Th e regression equation confi rms our initial fi nding of no relationship be-
tween the two variables. Th e slope coeffi  cient is clearly not statistically signifi cant. 
A t value of .26 with 4 degrees of freedom fails to exceed the t value associated 
with alpha at .05 (t 5 2.132). Th e r2 for the model is .017, indicating that the 
number of police cars on patrol in Normal explains less than 2% of the variation 
in indecent exposure arrest rates in Kansas City.

Generally speaking, if the independent variable does a poor job of explaining 
variation in the dependent variable, the r2 value will also be quite low. A statisti-
cally insignifi cant slope and low r2 are signs that the independent variable does a 
poor job of explaining variation in the dependent variable.

Chapter Summary
Regression is a technique that can be used to describe the statistical relationship 
between two interval variables. Th is chapter illustrated the use of simple (bivari-
ate) linear regression.

Th e relationship between two variables can be summarized by a line, and 
any line can be fully described by its slope and its intercept. Th e slope of a line 
is equal to the ratio of the change in Y to a given change in X. Th e intercept of 
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