Automata and Grammars

SS 2018

Assignment 1

Solutions are to be presented at the Seminary on Thursday, March 1, 2018.

Problem 1.1. [Words]

(a) Let Σ be a finite alphabet. Prove that the operation of concatenation $\cdot: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ is commutative if and only if Σ has cardinality one.
(b) Show that, for two words $u, v \in \Sigma^{*}, u v=v u$ if and only if there exist a word $x \in \Sigma^{*}$ and integers $k, l \geq 0$ such that $u=x^{k}$ and $v=x^{l}$.

Hint: Use induction on $|u|+|v|$.

Problem 1.2. [Regular Grammars]

Construct regular grammars for at least three of the following languages:
(a) $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}\right.$ is divisible by 2$\}$,
(b) $L_{2}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}\right.$ is divisible by 2 and by 3$\}$,
(c) $L_{3}=\left\{w \in\{a, b\}^{*} \mid w=u a b a b\right.$ for some word $\left.u \in\{a, b\}^{*}\right\}$,
(d) $L_{4}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains the factor $\left.a b a b\right\}$,
(e) $L_{5}=\left\{w \in\{a, b\}^{*}| | w \mid=(3 k+1)\right.$ for some $k \geq 0$ or w ends with $\left.b\right\}$,
(f) $\quad L_{6}=\left\{w \in\{a, b\}^{*} \mid\right.$ The first and the last letter of w are identical $\}$.

Problem 1.3. [Regular Grammars]

Determine the languages that are generated by the following regular grammars:
(a) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{ll}
S \rightarrow a a b A, & S \rightarrow b b a B, \\
A \rightarrow a a b A, & A \rightarrow a a b, \\
B \rightarrow b b a B, & B \rightarrow b b a .
\end{array}
$$

(b) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{lll}
S \rightarrow a b A, & \\
A \rightarrow a b A, & A \rightarrow a b B, \\
B \rightarrow b a B, & B \rightarrow b a .
\end{array}
$$

(c) $G=(\{S, A, B\},\{a, b\}, S, P)$, where P contains the following productions:

$$
\begin{array}{lllllll}
S & \rightarrow S b, & S & \rightarrow A a, & S & \rightarrow \varepsilon, \\
A & \rightarrow A b, & A & \rightarrow B a, & \\
B & \rightarrow B b, & B & \rightarrow S a . &
\end{array}
$$

