Automata and Grammars

SS 2018

Assignment 1

Solutions are to be presented at the Seminary on Thursday, March 1, 2018.

Problem 1.1. [Words]

- (a) Let Σ be a finite alphabet. Prove that the operation of concatenation $\cdot : \Sigma^* \times \Sigma^* \to \Sigma^*$ is commutative if and only if Σ has cardinality one.
- (b) Show that, for two words $u, v \in \Sigma^*$, uv = vu if and only if there exist a word $x \in \Sigma^*$ and integers $k, l \ge 0$ such that $u = x^k$ and $v = x^l$.

Hint: Use induction on |u| + |v|.

Problem 1.2. [Regular Grammars]

Construct regular grammars for at least three of the following languages:

(a) $L_1 = \{ w \in \{a, b\}^* \mid |w|_a \text{ is divisible by } 2 \},$ (b) $L_2 = \{ w \in \{a, b\}^* \mid |w|_a \text{ is divisible by } 2 \text{ and by } 3 \},$ (c) $L_3 = \{ w \in \{a, b\}^* \mid w = uabab \text{ for some word } u \in \{a, b\}^* \},$ (d) $L_4 = \{ w \in \{a, b\}^* \mid w \text{ contains the factor } abab \},$ (e) $L_5 = \{ w \in \{a, b\}^* \mid |w| = (3k + 1) \text{ for some } k \ge 0 \text{ or } w \text{ ends with } b \},$ (f) $L_6 = \{ w \in \{a, b\}^* \mid \text{The first and the last letter of } w \text{ are identical } \}.$

Problem 1.3. [Regular Grammars]

Determine the languages that are generated by the following regular grammars:

(a) $G = (\{S, A, B\}, \{a, b\}, S, P)$, where P contains the following productions:

(b) $G = (\{S, A, B\}, \{a, b\}, S, P)$, where P contains the following productions:

(c) $G = (\{S, A, B\}, \{a, b\}, S, P)$, where P contains the following productions: