2.3 Deterministic Finite-State Automaton

A finite-state automaton reads an input word letter by letter from left to right and accepts or rejects.

finite-state automaton \sim language of accepted words

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Definition 2.6

A determinististic finite-state automaton (DFA) A is given through a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$, where

- -Q is a finite set of (internal) states,
- $-\Sigma$ is a finite (input) alphabet,
- $\delta : Q \times \Sigma \rightsquigarrow Q$ is a (partial) transition function,
- $-q_0 \in Q$ is the initial state, and
- $F \subseteq Q$ is a set of accepting states.

If δ is defined for all $(q, a) \in Q \times \Sigma$, then A is a complete DFA.

A DFA can be described by a state graph G = (Kn, Ka):

- -Kn := Q,
- Ka : If $\delta(q_1, a) = q_2$, then there is a directed edge with label a from q_1 to q_2 .
- q_0 and $q \in F$ are marked in a special way.

Example:

$$A = (Q, \Sigma, \delta, q_0, F), \text{ where} \\ Q = \{q_0, q_1, q_2, q_3\}, \quad \Sigma = \{a, b\}, \quad F = \{q_3\}, \text{ and} \\ \delta(q_0, a) = q_1, \quad \delta(q_0, b) = q_3 \\ \delta(q_1, a) = q_2, \quad \delta(q_1, b) = q_0 \\ \delta(q_2, a) = q_3, \quad \delta(q_2, b) = q_1 \\ \delta(q_3, a) = q_0, \quad \delta(q_3, b) = q_2 \end{cases}$$

State graph:

590

E

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

Ξ.

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

Ξ.

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

Ξ.

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

Ξ.

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

Ξ.

Input: aabaa

Computation: $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_1 \stackrel{a}{\rightarrow} q_2 \stackrel{a}{\rightarrow} q_3$ Result:aabaa is accepted.

SQ (P

1

▲□▶▲□▶▲□▶▲□▶

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The function $\delta : Q \times \Sigma \rightsquigarrow Q$ can be extended to a function $\hat{\delta} : Q \times \Sigma^* \rightsquigarrow Q$, where $q \in Q$, $u \in \Sigma^*$, and $a \in \Sigma$: $-\hat{\delta}(q, \varepsilon) := q$, $-\hat{\delta}(q, u) = \begin{cases} \delta(\hat{\delta}(q, u), a), & \text{if } \hat{\delta}(q, u) \text{ is defined,} \\ & \text{undefined,} & \text{otherwise.} \end{cases}$

 $L_{A,q_1,q_2} := \{ u \in \Sigma^* \mid \hat{\delta}(q_1, u) = q_2 \}$ is the set of words that take *A* from state q_1 to state q_2 .

If $\hat{\delta}(q_0, w) \in F$, then the word w is accepted by the DFA A. The set $L(A) := \bigcup_{q \in F} L_{A,q_0,q}$ of all words that are accepted by A is called the language accepted by A.

SQ A

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notice:

For all
$$q \in Q$$
 and $a_1, a_2, \dots, a_n \in \Sigma$,
 $\hat{\delta}(q, a_1 a_2 \dots a_n) = \hat{\delta}(\delta(q, a_1), a_2 \dots a_n)$
 $= \hat{\delta}(\delta(\delta(q, a_1), a_2), a_3 \dots a_n)$
 $= \delta(\delta(\dots \delta(\delta(q, a_1), a_2) \dots, a_{n-1}), a_n)$

For all $q \in Q$ and $u, v \in \Sigma^*$, $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$.

Example (cont.):

$$L(A) = \{ x \in \Sigma^* \mid |x|_a - |x|_b \equiv 3 \mod 4 \}.$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ -

A word of the form $qu \in Q \cdot \Sigma^*$ is called a configuration of A. The DFA A induces a computation relation \vdash_A^* on $Q \cdot \Sigma^*$. It follows that $L(A) = \{ u \in \Sigma^* \mid q_0 u \vdash_A^* q \text{ for some } q \in F \}.$

Lemma 2.7

From a given DFA A, a complete DFA B can be constructed such that L(B) = L(A).

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an incomplete DFA. We define a DFA $B = (Q \cup \{\bot\}, \Sigma, \delta', q_0, F)$ through $\delta'(q, a) = \begin{cases} \delta(q, a), & \text{if } \delta(q, a) \text{ is defined,} \\ \bot, & \text{otherwise,} \end{cases}$ $\delta'(\bot, a) = \bot$ for all $a \in \Sigma$.

▲□▶▲□▶▲□▶▲□▶ ■ めのの

Proof of Lemma 2.7 (cont.).)

Then the following equality holds for all $q \in Q$ and all $u \in \Sigma^*$:

$$\delta'(q, u) = \left\{ egin{array}{cc} \delta(q, u), & ext{if } \delta(q, u) ext{ is defined,} \ oldsymbol{\perp}, & ext{otherwise.} \end{array}
ight.$$

Hence,

$$L(A) = \{ u \in \Sigma^* \mid \delta(q_0, u) \in F \} = \{ u \in \Sigma^* \mid \delta'(q_0, u) \in F \} = L(B). \quad \Box$$

Let $\mathcal{L}(DFA)$ denote the class of languages that are accepted by DFAs.

Theorem 2.8

 $\mathcal{L}(DFA)$ is closed under the operations of union, intersection, and complement.

E.

<ロ > < 同 > < 同 > < 三 > < 三 > 、

Proof.

Let L = L(A), where $A = (Q, \Sigma, \delta, q_0, F)$ is a complete DFA. Then $\overline{A} := (Q, \Sigma, \delta, q_0, Q \smallsetminus F)$ is a complete DFA for $\Sigma^* \smallsetminus L(A) = L^C$. Hence, $\mathcal{L}(DFA)$ is closed under the operation of complement. Let $A_i = (Q_i, \Sigma, \delta_i, q_0^{(i)}, F_i)$ be a complete DFA for L_i , i = 1, 2. A DFA for the intersection $L_1 \cap L_2$ is obtained by taking $A = (Q, \Sigma, \delta, q_0, F)$, where $Q := Q_1 \times Q_2, q_0 := (q_0^{(1)}, q_0^{(2)}), F := F_1 \times F_2$, and $\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_2, a))$ for all $q_1 \in Q_1, q_2 \in Q_2, a \in \Sigma$. Then $\delta(q_0, w) = (\delta_1(q_0^{(1)}, w), \delta_2(q_2^{(2)}, w)) \in F = F_1 \times F_2$ iff $w \in L_1$ and $w \in L_2$, that is, $L(A) = L_1 \cap L_2$. A is called the product automaton of A_1 and A_2 . By De Morgan's law, closure under union follows.

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2.9

If a language L is accepted by a DFA, then L is right regular.

Proof.

Let $L \subseteq \Sigma^*$ be accepted by a complete DFA $A = (Q, \Sigma, \delta, q_0, F)$. We define a right regular grammar $G := (V, \Sigma, P, S)$ as follows: -V := Q, $-S := q_0$, $-P := \{ q_1 \rightarrow aq_2 \mid \delta(q_1, a) = q_2 \}$ $\cup \{ q_1 \rightarrow a \mid \delta(q_1, a) = q_2 \text{ and } q_2 \in F \}$

If $q_0 \in F$, i.e., $\varepsilon \in L(A)$, then we add the new start symbol \hat{q}_0 and the following productions:

$$\{ \hat{q}_0 \to \varepsilon \} \quad \text{and} \quad \{ \hat{q}_0 \to a q_2 \mid \delta(q_0, a) = q_2 \} \\ \text{and} \quad \{ \hat{q}_0 \to a \mid \delta(q_0, a) \in F \}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶▲□▶▲□▶▲□▶ = □

Proof of Theorem 2.9 (cont.).

Claim.

```
\forall x \in \Sigma^+ : x \in L(A) \text{ iff } x \in L(G).
```

Proof.

$$\begin{aligned} x &= a_1 a_2 \dots a_n \in L(A) \\ \text{iff} \\ \exists q_1, q_2, \dots, q_n \in Q : q_n \in F \text{ and } \delta(q_{i-1}, a_i) = q_i \ (1 \leq i \leq n) \\ \text{iff} \\ \exists q_1, \dots, q_n \in V : q_0 \rightarrow a_1 q_1 \rightarrow \dots \rightarrow a_1 \dots a_{n-1} q_{n-1} \rightarrow a_1 \dots a_{n-1} a_n \\ \text{iff} \\ x &= a_1 a_2 \dots a_n \in L(G). \end{aligned}$$

Prof. Dr. F. Otto (Universität Kassel)

590

Ξ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are many DFA that accept the same language. Among these is there a smallest DFA?

Let $L \subseteq \Sigma^*$.

Definition 2.10

The Nerode relation $R_L \subseteq \Sigma^* \times \Sigma^*$ for L is defined through

 $x \ R_L \ y \ iff \ \forall z \in \Sigma^* : (xz \in L \ iff \ yz \in L).$

Lemma 2.11

- $-R_L$ is an equivalence relation on Σ^* .
- If $x \ R_L y$, then $xw \ R_L yw$ for all $w \in \Sigma^*$.
- $-R_L$ partitions Σ^* (and L) into disjoint equivalence classes.

The index of R_L := number of equivalence classes of R_L .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 巨ト < 巨ト = 巨

Theorem 2.12 (Myhill, Nerode)

A language L is accepted by a DFA iff the relation R_L has finite index.

Proof.

"⇒": Let $A = (Q, \Sigma, \delta, q_0, F)$ be a complete DFA for *L*. We define a binary relation $R_A \subseteq \Sigma^* \times \Sigma^*$: *x* R_A *y* iff $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.

Claim. $R_A \subseteq R_L$.

Proof.

Assume that $x R_A y$, and let $z \in \Sigma^*$.

Then:
$$xz \in L$$
 iff $\hat{\delta}(q_0, xz) \in F$ iff $\hat{\delta}(\hat{\delta}(q_0, x), z) \in F$
iff $\hat{\delta}(\hat{\delta}(q_0, y), z) \in F$ iff $\hat{\delta}(q_0, yz) \in F$
iff $yz \in L$.

Hence: $x R_L y$.

Thus:
$$\operatorname{index}(R_L) \leq \operatorname{index}(R_A) \leq |Q| < \infty.$$

Prof. Dr. F. Otto (Universität Kassel)

SAR

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of Theorem 2.12 (cont.)

" \Leftarrow ": Assume that R_l has finite index. Then there are finitely many words $x_1, x_2, \ldots, x_k \in \Sigma^*$ such that $\Sigma^* = [x_1] \cup [x_2] \cup \ldots \cup [x_k].$ We define a complete DFA $A_0 := (Q_0, \Sigma, \delta, q_0, F)$: $-Q_0 := \{ [x_1], [x_2], \ldots, [x_k] \},\$ $-q_0 := [\varepsilon],$ $-F := \{ [x_i] \mid x_i \in L \},\$ $-\delta([x_i], a) := [x_i a]$ (for all $i = 1, 2, \dots, k$ and $a \in \Sigma$). Then $\hat{\delta}([\varepsilon], x) = [x]$ for all $x \in \Sigma^*$, that is, $x \in L(A_0)$ iff $\hat{\delta}(q_0, x) \in F$ iff $\hat{\delta}([\varepsilon], \mathbf{x}) \in F$ iff $[x] \in F$ iff $x \in L$.

 A_0 is called the equivalence class automaton for L.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example 1:

$$L = \{ a^n b^n \mid n \ge 1 \}$$

Then:

$$[ab] = L$$

$$[a^{2}b] = \{a^{2}b, a^{3}b^{2}, a^{4}b^{3}, \ldots\}$$

$$[a^{3}b] = \{a^{3}b, a^{4}b^{2}, a^{5}b^{3}, \ldots\}$$

$$\vdots$$

$$[a^{k}b] = \{a^{k+i-1}b^{i} \mid i \ge 1\}$$

For all $i \neq j$, $a^i b$ and $a^j b$ are not equivalent w.r.t. R_L , that is, index $(R_L) = \infty$.

Hence, *L* is not accepted by any DFA.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

Example 2:

 $L = \{ x \in \{0, 1\}^* \mid x \text{ has suffix } 00 \}$ Then:

$$[\varepsilon] = \{ x \mid x \text{ does not have suffix 0} \}$$

$$[0] = \{ x \mid x \text{ has suffix 0, but not suffix 00} \}$$

$$[00] = \{ x \mid x \text{ has suffix 00} \}$$

 $\{0, 1\}^* = [\varepsilon] \cup [0] \cup [00]$, and hence, $index(R_L) = 3$.

Equivalence class automaton A_0 for L:

E

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ -

Assume that *L* is accepted by a complete DFA *A*, and let A_0 be the equivalence class automaton for *L*.

- Then: $R_A \subseteq R_L = R_{A_0}$,
- and so: $|Q| \ge |Q_0| = \operatorname{index}(R_L).$

In fact: If $|Q| = |Q_0|$, then $R_A = R_L$, that is, A and A_0 are isomorphic.

Thus: A_0 is the minimal automaton for *L*.

How to determine whether a given DFA *A* is minimal?

A is not minimal iff $\exists q, q' \in Q, q \neq q' : \forall x \in \Sigma^* : \hat{\delta}(q, x) \in F \text{ iff } \hat{\delta}(q', x) \in F.$

▲□▶▲□▶▲□▶▲□▶ ■ めのの

Algorithm "minimal automaton"

Input: a complete DFA $A = (Q, \Sigma, \delta, q_0, F)$.

- (0) Delete all states that are not reachable from q_0 .
- (1) Initialize a table of all pairs $\{q, q'\}$ such that $q \neq q'$.
- (2) Mark all pairs $\{q, q'\}$ for which $\{q, q'\} \cap F \neq \emptyset$ and $\{q, q'\} \cap (Q \setminus F) \neq \emptyset$.
- (3) For each unmarked pair {q, q'} and each a ∈ Σ, check whether {δ(q, a), δ(q', a)} is marked.
 If so, then mark {q, q'} as well.
- (4) Repeat (3) until no further pairs are marked.
- (5) For each unmarked pair $\{q, q'\}$, merge the states q and q' into a joint state.

Output: The minimal automaton for L(A)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 1:

Example 2:

Let $h : \Sigma^* \to \Delta^*$ be a morphism. Then $h^{-1} : \Delta^* \to 2^{\Sigma^*}$ is defined through

$$h^{-1}(v) := \{ u \in \Sigma^* \mid h(u) = v \}.$$

For a language $L \subseteq \Delta^*$, $h^{-1}(L)$ is defined as

$$h^{-1}(L) := \{ u \in \Sigma^* \mid h(u) \in L \}.$$

Theorem 2.13

The language class $\mathcal{L}(DFA)$ is closed under inverse morphisms, that is, if $h : \Sigma^* \to \Delta^*$ is a morphism and $L \subseteq \Delta^*$ is accepted by a DFA, then also $h^{-1}(L)$ is accepted by a DFA.

SQ Q

<ロ > < 同 > < 同 > < 三 > < 三 > <

Proof of Theorem 2.13.

Let $A = (Q, \Delta, \delta, q_0, F)$ be a complete DFA such that L(A) = Land let $h : \Sigma^* \to \Delta^*$ be a morphism. We construct a DFA $B := (Q, \Sigma, \delta', q_0, F)$ by taking

$$\forall q \in Q \, \forall a \in \Sigma : \delta'(q, a) := \delta(q, h(a)).$$

Claim:

For all $x \in \Sigma^*$, $\delta'(q_0, x) = \delta(q_0, h(x))$.

Prof. Dr. F. Otto (Universität Kassel)

590

Proof by induction on |x|:

If
$$x = \varepsilon$$
, then $\delta'(q_0, x) = q_0 = \delta(q_0, \varepsilon) = \delta(q_0, h(x))$.

Assume that the claim has been proved for some $n \ge 0$, let *x* be a word of length *n*, and let $a \in \Sigma$. Then:

$$\delta'(q_0, xa) = \delta'(\delta'(q_0, x), a) \underset{\text{I.H.}}{=} \delta'(\delta(q_0, h(x)), a) = \delta(\delta(q_0, h(x)), h(a))$$
$$= \delta(q_0, h(x)h(a)) = \delta(q_0, h(xa)).$$

Thus, for all $x \in \Sigma^*$: $x \in L(B)$ iff $\delta'(q_0, x) \in F$ iff $\delta(q_0, h(x)) \in F$ iff $h(x) \in L$ iff $x \in h^{-1}(L)$,

that is, $L(B) = h^{-1}(L)$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >