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Let L ⊆ Σ∗ be a language, and let G = (N,Σ, P, S) be a grammar. We want to prove that
L = L(G). How do we do that in a systematic way? Here we present such a way using some
simple examples. However, we first show how to prove a property concerning words.

Lemma 1. [Words]
Let u, v, z ∈ Σ∗ be three words such that u 6= ε and uv = vz. Prove that there exist two
words x, y ∈ Σ∗ and an integer k ≥ 0 such that u = xy, v = (xy)kx, and z = yx.

Proof. We proceed by induction on |v|:

• Basis of the induction: |v| ≤ |u|: Then uv = vz implies that u = vw and z = wv for
some word w ∈ Σ∗. Choosing x = v, y = w, and k = 0, we obtain that u = vw = xy,
v = (xy)kx, and z = wv = yx.

• Induction hypothesis: Assume that the statement holds for all v up to some positive
length n ≥ |u|.

• Inductive claim: The statement also holds for all v of length n+ 1.

• Inductive step: As |v| = n + 1 > n ≥ |u|, we see that v = ur and v = rz for some
r ∈ Σ+, and so uur = uv = urz. This yields that ur = rz. Since u 6= ε, we see that
|r| < |v|. Hence, the induction hypothesis applies to the equation ur = rz. It implies
that u = xy, r = (xy)kx, and z = yx for some words x, y ∈ Σ∗ and an integer k ≥ 0.
Hence, v = rz = (xy)kxyx = (xy)k+1x. 2

Now we turn to the announced problem of proving L(G) = L for a given grammar G and a
language L.

Example 1. Let G = (N,Σ, P, S), where N = {A,B}, Σ = {a}, S = A, and P contains
the following productions: A→ a,A→ aB,B → aA.

Theorem. L(G) = { a2n+1 | n ≥ 0 }.

Let L = { a2n+1 | n ≥ 0 }. Thus, we need to prove that L = L(G). As L and L(G) are
languages, that is, sets of words, we do this by showing the two inclusions L ⊆ L(G) and
L(G) ⊆ L.

Proof of L(G) ⊆ L. We will proceed by induction on the length n of a derivation S →n
G w.

Actually, we will show a stronger statement than just that w ∈ L, because such a stronger
statement yields a stronger induction hypothesis that we can then use in the inductive step.
Here we consider the set L̂(G) of all sentential forms generated by G, that is,

L̂(G) = {α ∈ (N ∪ Σ)∗ | S →∗G α },

and we claim that L̂(G) ⊆ L′, where

L′ = { a2n+1 | n ≥ 0 } ∪ {a2nA | n ≥ 0 } ∪ {a2n+1B | n ≥ 0 }.



This claim immediately yields L(G) ⊆ L, as L(G) = L̂(G) ∩ Σ∗ ⊆ L′ ∩ Σ∗ = L.

Claim 1. L̂(G) ⊆ L′.

Proof of Claim 1: By induction on n, we show that A→n
G α implies that α ∈ L′.

• Basis of induction. n = 0: A→0
G α implies α = A, which satisfies A = a2·0A ∈ L′.

• Induction hypothesis: For some n ≥ 0, if A→n
G α, then α ∈ L′.

• Inductive claim: If A→n+1
G α, then α ∈ L′.

• Inductive step: Assume that A →n+1
G α. Hence, there exists a sentential form γ such

that A →n
G γ →G α. By the induction hypothesis, γ ∈ L′. Based on the structure of

the set L′, we now distinguish between three cases:

1. γ = a2m+1 for some m ≥ 0. Then γ is a terminal word, and hence, no production
can be applied to it. Thus, this case cannot occur.

2. γ = a2mA for some m ≥ 0. Then γ →G α implies that α = a2m+1 or α = a2m+1B.
In either case, α ∈ L′.

3. γ = a2m+1B for some m ≥ 0. Then γ →G α implies that α = a2m+2A, which
belongs to L′.

This completes the proof of Claim 1. 2

Claim 2. L ⊆ L(G).

Proof of Claim 2: By induction on n, we show that a2n+1 ∈ L(G).

• Basis of induction: n = 0: The word a2n+1 = a1 = a ∈ L(G), as A→G a holds.

• Induction hypothesis: For some n ≥ 0, a2n+1 ∈ L(G).

• Inductive claim: a2(n+1)+1 = a2n+3 ∈ L(G).

• Inductive step: As a2n+1 ∈ L(G), we have a derivation A→∗G a2n+1. Hence, we obtain
a derivation A→G aB →G aaA→∗G aaa2n+1 = a2n+3, which shows that a2n+3 ∈ L(G).

This complete the proof of Claim 2, and therewith the proof of the theorem. 2

In more involved cases it is often useful to consider all sets of the form

L(G,C) = {w ∈ Σ∗ | C →∗G w } (C ∈ N).

For the example above, we would get the claim that,

for all n ≥ 0, a2n+1 ∈ L(G,A) and a2n+2 ∈ L(G,B).

We prove this by induction on n:

• Basis of induction: n = 0: The word a2n+1 = a1 = a ∈ L(G,A), as A→G a holds, and
a2n+2 = a2 ∈ L(G,B), as B →G aA→G aa.

• Induction hypothesis: For some n ≥ 0, a2n+1 ∈ L(G,A) and a2n+2 ∈ L(G,B).

• Inductive claim: a2(n+1)+1 = a2n+3 ∈ L(G,A) and a2(n+1)+2 = a2n+4 ∈ L(G,B).

• Inductive step: As a2n+1 ∈ L(G,A), we have a derivation A→∗G a2n+1, and as a2n+2 ∈
L(G,B), we have a derivation B →∗G a2n+2. Hence, we obtain a derivation A →G

aB →∗G aa2n+2 = a2n+3, which shows that a2n+3 ∈ L(G,A), and we obtain a derivation
B →G aA→∗G aa2n+3 = a2n+4, which shows that a2n+4 ∈ L(G,B).

This complete the proof of the above claim. 2



Example 2. Let L = {w ∈ {a, b, c}∗ | |w|a ≡ 0 mod 2 }. Determine a regular grammar
that generates the language L!

(a) We first present a regular grammar G = (N,Σ, P, S):

• N = {S,E,U}, Σ = {a, b, c}, and

• P contains the following productions:

S → aU, S → b, S → bE, S → c, S → cE, S → ε,
E → aU,E → b, E → bE,E → c, E → cE,
U → a, U → aE,U → bU, U → cU.

(b) Claim. L(G) = L.

Proof. We will prove the following two statements:

L(G,E) = {w ∈ Σ+ | |w|a ≡ 0 mod 2 } and
L(G,U) = {w ∈ Σ+ | |w|a ≡ 1 mod 2 }.

Assume first that the above statements have already been shown. Then

L(G) = L(G,S) = {ε, b, c} ∪ { aw | w ∈ L(G,U) } ∪ {bw, cw | w ∈ L(G,E) }
= {ε, b, c} ∪ { aw | |w|a ≡ 1 mod 2 } ∪ { bw, cw | |w|a ≡ 0 mod 2 }
= {ε, b, c} ∪ { aw | |aw|a ≡ 0 mod 2 } ∪ { bw | |bw|a ≡ 0 mod 2 }
∪{ cw | |cw|a ≡ 0 mod 2 }

= {w ∈ Σ∗ | |w|a ≡ 0 mod 2 } = L.

Now we prove that L(G,E) ⊆ {w ∈ Σ+ | |w|a ≡ 0 mod 2 } and that L(G,U) ⊆ {w ∈ Σ+ |
|w|a ≡ 1 mod 2 }. Since the empty word cannot be derived from E or from U , it suffices to
consider non-empty words. Thus, we actually prove the following statement:

∀n ≥ 1 : (∀w ∈ Σ+ : (if E →n
G w, then |w|a ≡ 0 mod 2) and

(if U →n
G w, then |w|a ≡ 1 mod 2)).

We proceed by induction on n.

• Basis of induction: n = 1: If E →G w, then w = b or w = c. Hence, |w|a ≡ 0 mod 2.
Further, if U →G w, then w = a. Hence, |w|a ≡ 1 mod 2.

• Induction hypothesis: Assume that the above statement holds for some n ≥ 1.

• Inductive claim: The statement also holds for n+ 1.

• Inductive step: Assume that E →n+1
G w. Then there exists a sentential form α ∈

(N ∪ Σ)+ r Σ+ such that E →G α →n
G w, and |w| = n + 1. We distinguish between

three cases based on the production used in the first step E →G α.

(a) If α = aU , then w = av and U →n
G v. From the induction hypothesis we see that

|v|a ≡ 1 mod 2, which implies that |w|a = |av|a ≡ 0 mod 2.

(b) If α = bE, then w = bv and E →n
G v. From the indction hypothesis we see that

|v|a ≡ 0 mod 2, which implies that |w|a = |bv|a ≡ 0 mod 2.

(c) If α = cE, then it follows analogously to (b) that |w|a ≡ 0 mod 2.



Assume that U →n+1
G w. Then there exists a sentential form α such that U →G α→n

G

w. Here we again distinguish between three cases based on the production used in the
first step U →G α. Here α = aE, α = bU , or α = cU , and these cases are dealt with
analogously.

Now we prove that {w ∈ Σ+ | |w|a ≡ 0 mod 2 } ⊆ L(G,E) and that {w ∈ Σ+ | |w|a ≡ 1
mod 2 } ⊆ L(G,U). Thus, we actually prove the following statement:

∀n ≥ 1 : (∀w ∈ Σn : (if |w|a ≡ 0 mod 2, then E →∗G w) and
(if |w|a ≡ 1 mod 2, then U →∗G w)).

We proceed by induction on n.

• Basis of induction: n = 1: Then w ∈ Σ. If |w|a ≡ 0 mod 2, then w = b or w = c, and
we see that E →G w. If |w|a ≡ 1 mod 2, then w = a, and we see that U →G w.

• Induction hypothesis: The statement above holds for some n ≥ 1.

• Inductive claim: The statement holds also for n+ 1.

• Inductive step: Let w ∈ Σn+1. Assume first that |w|a ≡ 0 mod 2. We must show that
w ∈ L(G,E). We distinguish between three cases based on the first letter of w.

(a) w = av: Then |v| = n and |v|a ≡ 1 mod 2. By the induction hypothesis we have
U →∗G v. Hence, we obtain a derivation E →G aU →∗G av = w.

(b) w = bv: Then |v| = n and |v|a ≡ 0 mod 2. By the induciton hypothesis we have
E →∗G v. Hence, we obtain a derivation E →G bE →∗G bv = w.

(c) w = cv: Analogously to (b) it follows that E →∗G cv = w.

Assume now that |w|a ≡ 1 mod 2. We must show that w ∈ L(G,U). This is done
analogously to the previous case. Thus, we have shown that L(G,E) = {w ∈ Σ+ |
|w|a ≡ 0 mod 2 } and that L(G,U) = {w ∈ Σ+ | |w|a ≡ 1 mod 2 }. 2


