## Automata and Grammars

## SS 2018

## Remarks 1: How to Prove $L=L(G)$

Seminary: $\quad$ Thursday, February 22, 2018.

Let $L \subseteq \Sigma^{*}$ be a language, and let $G=(N, \Sigma, P, S)$ be a grammar. We want to prove that $L=L(G)$. How do we do that in a systematic way? Here we present such a way using some simple examples. However, we first show how to prove a property concerning words.

## Lemma 1. [Words]

Let $u, v, z \in \Sigma^{*}$ be three words such that $u \neq \varepsilon$ and $u v=v z$. Prove that there exist two words $x, y \in \Sigma^{*}$ and an integer $k \geq 0$ such that $u=x y, v=(x y)^{k} x$, and $z=y x$.
Proof. We proceed by induction on $|v|$ :

- Basis of the induction: $|v| \leq|u|$ : Then $u v=v z$ implies that $u=v w$ and $z=w v$ for some word $w \in \Sigma^{*}$. Choosing $x=v, y=w$, and $k=0$, we obtain that $u=v w=x y$, $v=(x y)^{k} x$, and $z=w v=y x$.
- Induction hypothesis: Assume that the statement holds for all $v$ up to some positive length $n \geq|u|$.
- Inductive claim: The statement also holds for all $v$ of length $n+1$.
- Inductive step: As $|v|=n+1>n \geq|u|$, we see that $v=u r$ and $v=r z$ for some $r \in \Sigma^{+}$, and so $u u r=u v=u r z$. This yields that $u r=r z$. Since $u \neq \varepsilon$, we see that $|r|<|v|$. Hence, the induction hypothesis applies to the equation $u r=r z$. It implies that $u=x y, r=(x y)^{k} x$, and $z=y x$ for some words $x, y \in \Sigma^{*}$ and an integer $k \geq 0$. Hence, $v=r z=(x y)^{k} x y x=(x y)^{k+1} x$.

Now we turn to the announced problem of proving $L(G)=L$ for a given grammar $G$ and a language $L$.

Example 1. Let $G=(N, \Sigma, P, S)$, where $N=\{A, B\}, \Sigma=\{a\}, S=A$, and $P$ contains the following productions: $A \rightarrow a, A \rightarrow a B, B \rightarrow a A$.
Theorem. $L(G)=\left\{a^{2 n+1} \mid n \geq 0\right\}$.
Let $L=\left\{a^{2 n+1} \mid n \geq 0\right\}$. Thus, we need to prove that $L=L(G)$. As $L$ and $L(G)$ are languages, that is, sets of words, we do this by showing the two inclusions $L \subseteq L(G)$ and $L(G) \subseteq L$.

Proof of $L(G) \subseteq L$. We will proceed by induction on the length $n$ of a derivation $S \rightarrow_{G}^{n} w$. Actually, we will show a stronger statement than just that $w \in L$, because such a stronger statement yields a stronger induction hypothesis that we can then use in the inductive step. Here we consider the set $\hat{L}(G)$ of all sentential forms generated by $G$, that is,

$$
\hat{L}(G)=\left\{\alpha \in(N \cup \Sigma)^{*} \mid S \rightarrow{ }_{G}^{*} \alpha\right\},
$$

and we claim that $\hat{L}(G) \subseteq L^{\prime}$, where

$$
L^{\prime}=\left\{a^{2 n+1} \mid n \geq 0\right\} \cup\left\{a^{2 n} A \mid n \geq 0\right\} \cup\left\{a^{2 n+1} B \mid n \geq 0\right\} .
$$

This claim immediately yields $L(G) \subseteq L$, as $L(G)=\hat{L}(G) \cap \Sigma^{*} \subseteq L^{\prime} \cap \Sigma^{*}=L$.
Claim 1. $\hat{L}(G) \subseteq L^{\prime}$.
Proof of Claim 1: By induction on $n$, we show that $A \rightarrow_{G}^{n} \alpha$ implies that $\alpha \in L^{\prime}$.

- Basis of induction. $n=0: A \rightarrow{ }_{G}^{0} \alpha$ implies $\alpha=A$, which satisfies $A=a^{2 \cdot 0} A \in L^{\prime}$.
- Induction hypothesis: For some $n \geq 0$, if $A \rightarrow_{G}^{n} \alpha$, then $\alpha \in L^{\prime}$.
- Inductive claim: If $A \rightarrow_{G}^{n+1} \alpha$, then $\alpha \in L^{\prime}$.
- Inductive step: Assume that $A \rightarrow_{G}^{n+1} \alpha$. Hence, there exists a sentential form $\gamma$ such that $A \rightarrow_{G}^{n} \gamma \rightarrow_{G} \alpha$. By the induction hypothesis, $\gamma \in L^{\prime}$. Based on the structure of the set $L^{\prime}$, we now distinguish between three cases:

1. $\gamma=a^{2 m+1}$ for some $m \geq 0$. Then $\gamma$ is a terminal word, and hence, no production can be applied to it. Thus, this case cannot occur.
2. $\gamma=a^{2 m} A$ for some $m \geq 0$. Then $\gamma \rightarrow_{G} \alpha$ implies that $\alpha=a^{2 m+1}$ or $\alpha=a^{2 m+1} B$. In either case, $\alpha \in L^{\prime}$.
3. $\gamma=a^{2 m+1} B$ for some $m \geq 0$. Then $\gamma \rightarrow_{G} \alpha$ implies that $\alpha=a^{2 m+2} A$, which belongs to $L^{\prime}$.

This completes the proof of Claim 1.
Claim 2. $L \subseteq L(G)$.
Proof of Claim 2: By induction on $n$, we show that $a^{2 n+1} \in L(G)$.

- Basis of induction: $n=0$ : The word $a^{2 n+1}=a^{1}=a \in L(G)$, as $A \rightarrow_{G} a$ holds.
- Induction hypothesis: For some $n \geq 0, a^{2 n+1} \in L(G)$.
- Inductive claim: $a^{2(n+1)+1}=a^{2 n+3} \in L(G)$.
- Inductive step: As $a^{2 n+1} \in L(G)$, we have a derivation $A \rightarrow_{G}^{*} a^{2 n+1}$. Hence, we obtain a derivation $A \rightarrow_{G} a B \rightarrow_{G} a a A \rightarrow_{G}^{*} a a a^{2 n+1}=a^{2 n+3}$, which shows that $a^{2 n+3} \in L(G)$.
This complete the proof of Claim 2, and therewith the proof of the theorem.
In more involved cases it is often useful to consider all sets of the form

$$
L(G, C)=\left\{w \in \Sigma^{*} \mid C \rightarrow{ }_{G}^{*} w\right\} \quad(C \in N)
$$

For the example above, we would get the claim that,

$$
\text { for all } n \geq 0, a^{2 n+1} \in L(G, A) \text { and } a^{2 n+2} \in L(G, B)
$$

We prove this by induction on $n$ :

- Basis of induction: $n=0$ : The word $a^{2 n+1}=a^{1}=a \in L(G, A)$, as $A \rightarrow_{G} a$ holds, and $a^{2 n+2}=a^{2} \in L(G, B)$, as $B \rightarrow_{G} a A \rightarrow_{G} a a$.
- Induction hypothesis: For some $n \geq 0, a^{2 n+1} \in L(G, A)$ and $a^{2 n+2} \in L(G, B)$.
- Inductive claim: $a^{2(n+1)+1}=a^{2 n+3} \in L(G, A)$ and $a^{2(n+1)+2}=a^{2 n+4} \in L(G, B)$.
- Inductive step: As $a^{2 n+1} \in L(G, A)$, we have a derivation $A \rightarrow_{G}^{*} a^{2 n+1}$, and as $a^{2 n+2} \in$ $L(G, B)$, we have a derivation $B \rightarrow_{G}^{*} a^{2 n+2}$. Hence, we obtain a derivation $A \rightarrow_{G}$ $a B \rightarrow_{G}^{*} a a^{2 n+2}=a^{2 n+3}$, which shows that $a^{2 n+3} \in L(G, A)$, and we obtain a derivation $B \rightarrow_{G} a A \rightarrow_{G}^{*} a a^{2 n+3}=a^{2 n+4}$, which shows that $a^{2 n+4} \in L(G, B)$.
This complete the proof of the above claim.

Example 2. Let $L=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} \equiv 0 \bmod 2\right\}$. Determine a regular grammar that generates the language $L$ !
(a) We first present a regular grammar $G=(N, \Sigma, P, S)$ :

- $N=\{S, E, U\}, \Sigma=\{a, b, c\}$, and
- $P$ contains the following productions:

$$
\begin{aligned}
& S \rightarrow a U, S \rightarrow b, S \rightarrow b E, S \rightarrow c, S \rightarrow c E, S \rightarrow \varepsilon, \\
& E \rightarrow a U, E \rightarrow b, E \rightarrow b E, E \rightarrow c, E \rightarrow c E, \\
& U \rightarrow a, U \rightarrow a E, U \rightarrow b U, U \rightarrow c U .
\end{aligned}
$$

(b) Claim. $L(G)=L$.

Proof. We will prove the following two statements:

$$
\begin{aligned}
& L(G, E)=\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 0 \bmod 2\right\} \text { and } \\
& L(G, U)=\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 1 \bmod 2\right\} .
\end{aligned}
$$

Assume first that the above statements have already been shown. Then

$$
\begin{aligned}
L(G)=L(G, S) & =\{\varepsilon, b, c\} \cup\{a w \mid w \in L(G, U)\} \cup\{b w, c w \mid w \in L(G, E)\} \\
& =\{\varepsilon, b, c\} \cup\left\{\left.a w| | w\right|_{a} \equiv 1 \bmod 2\right\} \cup\left\{b w,\left.c w| | w\right|_{a} \equiv 0 \bmod 2\right\} \\
& =\{\varepsilon, b, c\} \cup\left\{\left.a w| | a w\right|_{a} \equiv 0 \bmod 2\right\} \cup\left\{\left.b w| | b w\right|_{a} \equiv 0 \bmod 2\right\} \\
& =\left\{\left.c w| | c w\right|_{a} \equiv 0 \bmod 2\right\} \\
& =\left\{\left.w \in \Sigma^{*}| | w\right|_{a} \equiv 0 \bmod 2\right\}=L .
\end{aligned}
$$

Now we prove that $L(G, E) \subseteq\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 0 \bmod 2\right\}$ and that $L(G, U) \subseteq\left\{w \in \Sigma^{+} \mid\right.$ $\left.|w|_{a} \equiv 1 \bmod 2\right\}$. Since the empty word cannot be derived from $E$ or from $U$, it suffices to consider non-empty words. Thus, we actually prove the following statement:

$$
\begin{aligned}
\forall n \geq 1:\left(\forall w \in \Sigma^{+}:\right. & \left(\text {if } E \rightarrow_{G}^{n} w, \text { then }|w|_{a} \equiv 0 \bmod 2\right) \text { and } \\
& \left.\left(\text { if } U \rightarrow_{G}^{n} w, \text { then }|w|_{a} \equiv 1 \bmod 2\right)\right) .
\end{aligned}
$$

We proceed by induction on $n$.

- Basis of induction: $n=1$ : If $E \rightarrow_{G} w$, then $w=b$ or $w=c$. Hence, $|w|_{a} \equiv 0 \bmod 2$. Further, if $U \rightarrow_{G} w$, then $w=a$. Hence, $|w|_{a} \equiv 1 \bmod 2$.
- Induction hypothesis: Assume that the above statement holds for some $n \geq 1$.
- Inductive claim: The statement also holds for $n+1$.
- Inductive step: Assume that $E \rightarrow_{G}^{n+1} w$. Then there exists a sentential form $\alpha \in$ $(N \cup \Sigma)^{+} \backslash \Sigma^{+}$such that $E \rightarrow_{G} \alpha \rightarrow_{G}^{n} w$, and $|w|=n+1$. We distinguish between three cases based on the production used in the first step $E \rightarrow_{G} \alpha$.
(a) If $\alpha=a U$, then $w=a v$ and $U \rightarrow_{G}^{n} v$. From the induction hypothesis we see that $|v|_{a} \equiv 1 \bmod 2$, which implies that $|w|_{a}=|a v|_{a} \equiv 0 \bmod 2$.
(b) If $\alpha=b E$, then $w=b v$ and $E \rightarrow_{G}^{n} v$. From the indction hypothesis we see that $|v|_{a} \equiv 0 \bmod 2$, which implies that $|w|_{a}=|b v|_{a} \equiv 0 \bmod 2$.
(c) If $\alpha=c E$, then it follows analogously to (b) that $|w|_{a} \equiv 0 \bmod 2$.

Assume that $U \rightarrow_{G}^{n+1} w$. Then there exists a sentential form $\alpha$ such that $U \rightarrow_{G} \alpha \rightarrow_{G}^{n}$ $w$. Here we again distinguish between three cases based on the production used in the first step $U \rightarrow_{G} \alpha$. Here $\alpha=a E, \alpha=b U$, or $\alpha=c U$, and these cases are dealt with analogously.

Now we prove that $\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 0 \bmod 2\right\} \subseteq L(G, E)$ and that $\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 1\right.$ $\bmod 2\} \subseteq L(G, U)$. Thus, we actually prove the following statement:

$$
\begin{aligned}
\forall n \geq 1:\left(\forall w \in \Sigma^{n}:\right. & \left(\text { if }|w|_{a} \equiv 0 \bmod 2, \text { then } E \rightarrow_{G}^{*} w\right) \text { and } \\
& \left(\text { if }|w|_{a} \equiv 1 \bmod 2, \text { then } U \rightarrow{ }_{G}^{*} w\right) .
\end{aligned}
$$

We proceed by induction on $n$.

- Basis of induction: $n=1$ : Then $w \in \Sigma$. If $|w|_{a} \equiv 0 \bmod 2$, then $w=b$ or $w=c$, and we see that $E \rightarrow_{G} w$. If $|w|_{a} \equiv 1 \bmod 2$, then $w=a$, and we see that $U \rightarrow_{G} w$.
- Induction hypothesis: The statement above holds for some $n \geq 1$.
- Inductive claim: The statement holds also for $n+1$.
- Inductive step: Let $w \in \Sigma^{n+1}$. Assume first that $|w|_{a} \equiv 0 \bmod 2$. We must show that $w \in L(G, E)$. We distinguish between three cases based on the first letter of $w$.
(a) $w=a v$ : Then $|v|=n$ and $|v|_{a} \equiv 1 \bmod 2$. By the induction hypothesis we have $U \rightarrow_{G}^{*} v$. Hence, we obtain a derivation $E \rightarrow_{G} a U \rightarrow_{G}^{*} a v=w$.
(b) $w=b v$ : Then $|v|=n$ and $|v|_{a} \equiv 0 \bmod 2$. By the induciton hypothesis we have $E \rightarrow{ }_{G}^{*} v$. Hence, we obtain a derivation $E \rightarrow_{G} b E \rightarrow_{G}^{*} b v=w$.
(c) $w=c v$ : Analogously to (b) it follows that $E \rightarrow{ }_{G}^{*} c v=w$.

Assume now that $|w|_{a} \equiv 1 \bmod 2$. We must show that $w \in L(G, U)$. This is done analogously to the previous case. Thus, we have shown that $L(G, E)=\left\{w \in \Sigma^{+} \mid\right.$ $\left.|w|_{a} \equiv 0 \bmod 2\right\}$ and that $L(G, U)=\left\{\left.w \in \Sigma^{+}| | w\right|_{a} \equiv 1 \bmod 2\right\}$.

