Automata and Grammars

SS 2018

Remarks 1: How to Prove L = L(G)

Seminary: Thursday, February 22, 2018.

Let $L \subseteq \Sigma^*$ be a language, and let $G = (N, \Sigma, P, S)$ be a grammar. We want to prove that L = L(G). How do we do that in a systematic way? Here we present such a way using some simple examples. However, we first show how to prove a property concerning words.

Lemma 1. [Words]

Let $u, v, z \in \Sigma^*$ be three words such that $u \neq \varepsilon$ and uv = vz. Prove that there exist two words $x, y \in \Sigma^*$ and an integer $k \geq 0$ such that $u = xy, v = (xy)^k x$, and z = yx.

Proof. We proceed by induction on |v|:

- Basis of the induction: $|v| \leq |u|$: Then uv = vz implies that u = vw and z = wv for some word $w \in \Sigma^*$. Choosing x = v, y = w, and k = 0, we obtain that u = vw = xy, $v = (xy)^k x$, and z = wv = yx.
- Induction hypothesis: Assume that the statement holds for all v up to some positive length $n \ge |u|$.
- Inductive claim: The statement also holds for all v of length n + 1.
- Inductive step: As $|v| = n + 1 > n \ge |u|$, we see that v = ur and v = rz for some $r \in \Sigma^+$, and so uur = uv = urz. This yields that ur = rz. Since $u \ne \varepsilon$, we see that |r| < |v|. Hence, the induction hypothesis applies to the equation ur = rz. It implies that u = xy, $r = (xy)^k x$, and z = yx for some words $x, y \in \Sigma^*$ and an integer $k \ge 0$. Hence, $v = rz = (xy)^k xyx = (xy)^{k+1}x$.

Now we turn to the announced problem of proving L(G) = L for a given grammar G and a language L.

Example 1. Let $G = (N, \Sigma, P, S)$, where $N = \{A, B\}$, $\Sigma = \{a\}$, S = A, and P contains the following productions: $A \to a, A \to aB, B \to aA$.

Theorem. $L(G) = \{ a^{2n+1} \mid n \ge 0 \}.$

Let $L = \{a^{2n+1} \mid n \ge 0\}$. Thus, we need to prove that L = L(G). As L and L(G) are languages, that is, sets of words, we do this by showing the two inclusions $L \subseteq L(G)$ and $L(G) \subseteq L$.

Proof of $L(G) \subseteq L$. We will proceed by induction on the length n of a derivation $S \to_G^n w$. Actually, we will show a stronger statement than just that $w \in L$, because such a stronger statement yields a stronger induction hypothesis that we can then use in the inductive step. Here we consider the set $\hat{L}(G)$ of all sentential forms generated by G, that is,

$$\hat{L}(G) = \{ \alpha \in (N \cup \Sigma)^* \mid S \to_G^* \alpha \},\$$

and we claim that $\hat{L}(G) \subseteq L'$, where

$$L' = \{ a^{2n+1} \mid n \ge 0 \} \cup \{ a^{2n}A \mid n \ge 0 \} \cup \{ a^{2n+1}B \mid n \ge 0 \}.$$

This claim immediately yields $L(G) \subseteq L$, as $L(G) = \hat{L}(G) \cap \Sigma^* \subseteq L' \cap \Sigma^* = L$. Claim 1. $\hat{L}(G) \subseteq L'$.

Proof of Claim 1: By induction on n, we show that $A \to_G^n \alpha$ implies that $\alpha \in L'$.

- Basis of induction. n = 0: $A \to_G^0 \alpha$ implies $\alpha = A$, which satisfies $A = a^{2 \cdot 0} A \in L'$.
- Induction hypothesis: For some $n \ge 0$, if $A \to_G^n \alpha$, then $\alpha \in L'$.
- Inductive claim: If $A \to_G^{n+1} \alpha$, then $\alpha \in L'$.
- Inductive step: Assume that $A \to_G^{n+1} \alpha$. Hence, there exists a sentential form γ such that $A \to_G^n \gamma \to_G \alpha$. By the induction hypothesis, $\gamma \in L'$. Based on the structure of the set L', we now distinguish between three cases:
 - 1. $\gamma = a^{2m+1}$ for some $m \ge 0$. Then γ is a terminal word, and hence, no production can be applied to it. Thus, this case cannot occur.
 - 2. $\gamma = a^{2m}A$ for some $m \ge 0$. Then $\gamma \to_G \alpha$ implies that $\alpha = a^{2m+1}$ or $\alpha = a^{2m+1}B$. In either case, $\alpha \in L'$.
 - 3. $\gamma = a^{2m+1}B$ for some $m \ge 0$. Then $\gamma \to_G \alpha$ implies that $\alpha = a^{2m+2}A$, which belongs to L'.

This completes the proof of Claim 1.

Claim 2. $L \subseteq L(G)$.

Proof of Claim 2: By induction on n, we show that $a^{2n+1} \in L(G)$.

- Basis of induction: n = 0: The word $a^{2n+1} = a^1 = a \in L(G)$, as $A \to_G a$ holds.
- Induction hypothesis: For some $n \ge 0$, $a^{2n+1} \in L(G)$.
- Inductive claim: $a^{2(n+1)+1} = a^{2n+3} \in L(G)$.
- Inductive step: As $a^{2n+1} \in L(G)$, we have a derivation $A \to_G^* a^{2n+1}$. Hence, we obtain a derivation $A \to_G aB \to_G aaA \to_G^* aaa^{2n+1} = a^{2n+3}$, which shows that $a^{2n+3} \in L(G)$.

This complete the proof of Claim 2, and therewith the proof of the theorem. \Box

In more involved cases it is often useful to consider all sets of the form

$$L(G,C) = \{ w \in \Sigma^* \mid C \to_G^* w \} \quad (C \in N).$$

For the example above, we would get the claim that,

for all
$$n \ge 0$$
, $a^{2n+1} \in L(G, A)$ and $a^{2n+2} \in L(G, B)$.

We prove this by induction on n:

- Basis of induction: n = 0: The word $a^{2n+1} = a^1 = a \in L(G, A)$, as $A \to_G a$ holds, and $a^{2n+2} = a^2 \in L(G, B)$, as $B \to_G aA \to_G aa$.
- Induction hypothesis: For some $n \ge 0$, $a^{2n+1} \in L(G, A)$ and $a^{2n+2} \in L(G, B)$.
- Inductive claim: $a^{2(n+1)+1} = a^{2n+3} \in L(G, A)$ and $a^{2(n+1)+2} = a^{2n+4} \in L(G, B)$.
- Inductive step: As $a^{2n+1} \in L(G, A)$, we have a derivation $A \to_G^* a^{2n+1}$, and as $a^{2n+2} \in L(G, B)$, we have a derivation $B \to_G^* a^{2n+2}$. Hence, we obtain a derivation $A \to_G aB \to_G^* aa^{2n+2} = a^{2n+3}$, which shows that $a^{2n+3} \in L(G, A)$, and we obtain a derivation $B \to_G aA \to_G^* aa^{2n+3} = a^{2n+4}$, which shows that $a^{2n+4} \in L(G, B)$.

This complete the proof of the above claim.

Example 2. Let $L = \{ w \in \{a, b, c\}^* \mid |w|_a \equiv 0 \mod 2 \}$. Determine a regular grammar that generates the language L!

(a) We first present a regular grammar $G = (N, \Sigma, P, S)$:

- $N = \{S, E, U\}, \Sigma = \{a, b, c\}, \text{ and }$
- *P* contains the following productions:

$$\begin{split} S &\to aU, S \to b, S \to bE, S \to c, S \to cE, S \to \varepsilon, \\ E &\to aU, E \to b, E \to bE, E \to c, E \to cE, \\ U &\to a, U \to aE, U \to bU, U \to cU. \end{split}$$

(b) **Claim.** L(G) = L.

Proof. We will prove the following two statements:

$$L(G, E) = \{ w \in \Sigma^+ \mid |w|_a \equiv 0 \mod 2 \} \text{ and} L(G, U) = \{ w \in \Sigma^+ \mid |w|_a \equiv 1 \mod 2 \}.$$

Assume first that the above statements have already been shown. Then

$$\begin{split} L(G) &= L(G,S) &= \{\varepsilon, b, c\} \cup \{aw \mid w \in L(G,U)\} \cup \{bw, cw \mid w \in L(G,E)\} \\ &= \{\varepsilon, b, c\} \cup \{aw \mid |w|_a \equiv 1 \mod 2\} \cup \{bw, cw \mid |w|_a \equiv 0 \mod 2\} \\ &= \{\varepsilon, b, c\} \cup \{aw \mid |aw|_a \equiv 0 \mod 2\} \cup \{bw \mid |bw|_a \equiv 0 \mod 2\} \\ &\cup \{cw \mid |cw|_a \equiv 0 \mod 2\} \\ &= \{w \in \Sigma^* \mid |w|_a \equiv 0 \mod 2\} = L. \end{split}$$

Now we prove that $L(G, E) \subseteq \{ w \in \Sigma^+ \mid |w|_a \equiv 0 \mod 2 \}$ and that $L(G, U) \subseteq \{ w \in \Sigma^+ \mid |w|_a \equiv 1 \mod 2 \}$. Since the empty word cannot be derived from E or from U, it suffices to consider non-empty words. Thus, we actually prove the following statement:

$$\forall n \ge 1 : (\forall w \in \Sigma^+ : (\text{if } E \to_G^n w, \text{ then } |w|_a \equiv 0 \mod 2) \text{ and} \\ (\text{if } U \to_G^n w, \text{ then } |w|_a \equiv 1 \mod 2)).$$

We proceed by induction on n.

- Basis of induction: n = 1: If $E \to_G w$, then w = b or w = c. Hence, $|w|_a \equiv 0 \mod 2$. Further, if $U \to_G w$, then w = a. Hence, $|w|_a \equiv 1 \mod 2$.
- Induction hypothesis: Assume that the above statement holds for some $n \ge 1$.
- Inductive claim: The statement also holds for n + 1.
- Inductive step: Assume that $E \to_G^{n+1} w$. Then there exists a sentential form $\alpha \in (N \cup \Sigma)^+ \setminus \Sigma^+$ such that $E \to_G \alpha \to_G^n w$, and |w| = n + 1. We distinguish between three cases based on the production used in the first step $E \to_G \alpha$.
 - (a) If $\alpha = aU$, then w = av and $U \to_G^n v$. From the induction hypothesis we see that $|v|_a \equiv 1 \mod 2$, which implies that $|w|_a = |av|_a \equiv 0 \mod 2$.
 - (b) If $\alpha = bE$, then w = bv and $E \to_G^n v$. From the indiction hypothesis we see that $|v|_a \equiv 0 \mod 2$, which implies that $|w|_a = |bv|_a \equiv 0 \mod 2$.
 - (c) If $\alpha = cE$, then it follows analogously to (b) that $|w|_a \equiv 0 \mod 2$.

Assume that $U \to_G^{n+1} w$. Then there exists a sentential form α such that $U \to_G \alpha \to_G^n w$. We again distinguish between three cases based on the production used in the first step $U \to_G \alpha$. Here $\alpha = aE$, $\alpha = bU$, or $\alpha = cU$, and these cases are dealt with analogously.

Now we prove that $\{w \in \Sigma^+ \mid |w|_a \equiv 0 \mod 2\} \subseteq L(G, E)$ and that $\{w \in \Sigma^+ \mid |w|_a \equiv 1 \mod 2\} \subseteq L(G, U)$. Thus, we actually prove the following statement:

$$\forall n \ge 1 : (\forall w \in \Sigma^n : (\text{if } |w|_a \equiv 0 \mod 2, \text{ then } E \to_G^* w) \text{ and } \\ (\text{if } |w|_a \equiv 1 \mod 2, \text{ then } U \to_G^* w)).$$

We proceed by induction on n.

- Basis of induction: n = 1: Then $w \in \Sigma$. If $|w|_a \equiv 0 \mod 2$, then w = b or w = c, and we see that $E \to_G w$. If $|w|_a \equiv 1 \mod 2$, then w = a, and we see that $U \to_G w$.
- Induction hypothesis: The statement above holds for some $n \ge 1$.
- Inductive claim: The statement holds also for n + 1.
- Inductive step: Let $w \in \Sigma^{n+1}$. Assume first that $|w|_a \equiv 0 \mod 2$. We must show that $w \in L(G, E)$. We distinguish between three cases based on the first letter of w.
 - (a) w = av: Then |v| = n and $|v|_a \equiv 1 \mod 2$. By the induction hypothesis we have $U \rightarrow_G^* v$. Hence, we obtain a derivation $E \rightarrow_G aU \rightarrow_G^* av = w$.
 - (b) w = bv: Then |v| = n and $|v|_a \equiv 0 \mod 2$. By the induction hypothesis we have $E \to_G^* v$. Hence, we obtain a derivation $E \to_G bE \to_G^* bv = w$.
 - (c) w = cv: Analogously to (b) it follows that $E \to_G^* cv = w$.

Assume now that $|w|_a \equiv 1 \mod 2$. We must show that $w \in L(G, U)$. This is done analogously to the previous case. Thus, we have shown that $L(G, E) = \{w \in \Sigma^+ \mid |w|_a \equiv 0 \mod 2\}$ and that $L(G, U) = \{w \in \Sigma^+ \mid |w|_a \equiv 1 \mod 2\}$. \Box