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Remarks 1: How to Prove L = L(G)

Seminary: Thursday, February 22, 2018.

Let L C ¥* be a language, and let G = (N, 3, P, S) be a grammar. We want to prove that
L = L(G). How do we do that in a systematic way? Here we present such a way using some
simple examples. However, we first show how to prove a property concerning words.

Lemma 1. [Words]
Let u,v,z € ¥* be three words such that v # ¢ and uv = vz. Prove that there exist two
words z,y € ¥* and an integer k > 0 such that u = zy, v = (2y)*z, and z = yu.

Proof. We proceed by induction on |v|:

e Basis of the induction: |v| < |u|: Then uwv = vz implies that u = vw and z = wv for
some word w € %*. Choosing r = v, y = w, and k = 0, we obtain that u = vw = xy,
v = (zy)¥z, and z = wv = yz.

e Induction hypothesis: Assume that the statement holds for all v up to some positive
length n > |ul.

e Inductive claim: The statement also holds for all v of length n + 1.

e Inductive step: As [v] = n+1 > n > |u|, we see that v = ur and v = rz for some
r € ¥7, and so uur = uv = urz. This yields that ur = rz. Since u # ¢, we see that
|r| < |v|. Hence, the induction hypothesis applies to the equation ur = rz. It implies
that v = xy, r = (zy)*z, and 2z = yx for some words z,y € ¥* and an integer k > 0.
Hence, v = rz = (xy)*zyz = (zy) . O

Now we turn to the announced problem of proving L(G) = L for a given grammar G and a
language L.

Example 1. Let G = (N, %, P,S), where N = {A, B}, ¥ = {a}, S = A, and P contains
the following productions: A — a, A — aB, B — aA.

Theorem. L(G) = {a*"" |n>0}.

Let L = {a?"*!' | n > 0}. Thus, we need to prove that L = L(G). As L and L(G) are
languages, that is, sets of words, we do this by showing the two inclusions L C L(G) and
L(G) C L.

Proof of L(G) C L. We will proceed by induction on the length n of a derivation S —¢ w.
Actually, we will show a stronger statement than just that w € L, because such a stronger
statement yields a stronger induction hypothesis that we can then use in the inductive step.
Here we consider the set L(G) of all sentential forms generated by G, that is,

LG)={ae(NUX)"|S =% al,
and we claim that L(G) C L', where

L'={ad" | n>0} U {a®™A|n>0} U {a®*™"B|n>0}.



This claim immediately yields L(G) C L, as L(G) = L(G)NY* C L' NX* = L.

Claim 1. L(G) C L.

Proof of Claim 1: By induction on n, we show that A —% « implies that a € L'.
e Basis of induction. n =0: A —>0G « implies o = A, which satisfies A = a®>A € L.
e Induction hypothesis: For some n > 0, if A =% «, then o € L’.

e Inductive claim: If A —%H a, then a € L.

e Inductive step: Assume that A —>Té+1 «. Hence, there exists a sentential form v such

that A —{ v —¢ «. By the induction hypothesis, 7 € L. Based on the structure of
the set L', we now distinguish between three cases:

1. v = a®*™*! for some m > 0. Then « is a terminal word, and hence, no production
can be applied to it. Thus, this case cannot occur.

2. v = a’"A for some m > 0. Then v —¢ « implies that o = a®”*! or a = a*™ ! B.
In either case, o € L'.

3. v = a® 1B for some m > 0. Then v —¢ « implies that o = a?*™2A, which
belongs to L'.

This completes the proof of Claim 1. O
Claim 2. L C L(G).
Proof of Claim 2: By induction on n, we show that a?"*! € L(G).

e Basis of induction: n = 0: The word a®**! = a' = a € L(G), as A —¢ a holds.

e Induction hypothesis: For some n > 0, a?"*! € L(G).

e Inductive claim: a?(t)+1 = 2743 ¢ (@),

e Inductive step: As a?"*! € L(G), we have a derivation A =G a®"t1. Hence, we obtain
a derivation A —¢ aB —¢ aad —% aaa® ™! = a®" 3, which shows that «*"™3 € L(G).

This complete the proof of Claim 2, and therewith the proof of the theorem. a
In more involved cases it is often useful to consider all sets of the form
LG,C)={we¥ |C—sw} (CeN).
For the example above, we would get the claim that,
for all n > 0, a®** € L(G, A) and o*"*? € L(G, B).
We prove this by induction on n:

e Basis of induction: n = 0: The word a®"*! = a! = a € L(G, A), as A —¢ a holds, and
a’*? = a2 € L(G, B), as B —¢ aA —¢ aa.

e Induction hypothesis: For some n > 0, a?"*1 € L(G, A) and a*"*2 € L(G, B).
e Inductive claim: a?"+D+1 = ¢2"+3 ¢ (G, A) and o> TD+2 = 2"+ ¢ (G, B).

e Inductive step: As a?"*! € L(G, A), we have a derivation A — e a®™ 1 and as a®"t2 ¢
L(G,B), we have a derivation B —, a’"*t2. Hence, we obtain a derivation A —¢
aB —% aa®t? = o3, which shows that a?"™3 € L(G, A), and we obtain a derivation
B —¢ aA —¢ aa® 3 = ¢ which shows that a*"™ € L(G, B).

This complete the proof of the above claim. a



Example 2. Let L = {w € {a,b,c}* | lw|, = 0 mod 2}. Determine a regular grammar
that generates the language L!

(a) We first present a regular grammar G = (N, X, P, S):
e N={S,E,U}, ¥ ={a,b,c}, and
e P contains the following productions:

S—alU,S—b,5S —bE,S—c¢,5—cE,S— ¢,
EF—aU E—-bFE—->bWE E—c FE— cE,
U—aU—aE,U—bUU — cU.

(b) Claim. L(G) = L.

Proof. We will prove the following two statements:

L(G,E) = {weX"||w|,=0 mod 2} and
L(G,U) {weXt ||wly=1 mod 2}.

Assume first that the above statements have already been shown. Then

L(G)=L(G,S) = {ebctU{aw|weL(G,U)}U{bw,cw|we L(G,E)}
= {g,bc}U{aw||w|s =1 mod 2} U{bw,cw | |w|, =0 mod 2}
= {e,b,c}U{aw||aw|, =0 mod 2} U {bw | |bw|, =0 mod 2}
U{cw | |cw|, =0 mod 2}
= {weX*||w,=0 mod2}=L.

Now we prove that L(G,F) C {w € 1 | |lw|, = 0 mod 2} and that L(G,U) C {w € ¥T |
|wl, =1 mod 2}. Since the empty word cannot be derived from E or from U, it suffices to
consider non-empty words. Thus, we actually prove the following statement:

Vn>1: (VweXt: (if E—% w, then |wl, =0 mod 2) and
(if U =% w, then |w|, =1 mod 2)).

We proceed by induction on n.

e Basis of induction: n = 1: If E —¢ w, then w = b or w = ¢. Hence, |w|, = 0 mod 2.
Further, if U —¢ w, then w = a. Hence, |w|, = 1 mod 2.

e Induction hypothesis: Assume that the above statement holds for some n > 1.

e Inductive claim: The statement also holds for n + 1.

e Inductive step: Assume that F —%'H w. Then there exists a sentential form « €

(NUX)" N E7 such that E —¢ a =% w, and |w| = n + 1. We distinguish between
three cases based on the production used in the first step £ —¢ a.

(a) If @ = aU, then w = av and U —¢ v. From the induction hypothesis we see that
||l = 1 mod 2, which implies that |w|, = |av|, = 0 mod 2.

(b) If a = bE, then w = bv and E —% v. From the indction hypothesis we see that
|v|¢ = 0 mod 2, which implies that |w|, = |bv], = 0 mod 2.

(c) If & = cE, then it follows analogously to (b) that |w|, =0 mod 2.



Assume that U —>?;+1 w. Then there exists a sentential form « such that U —qg o —¢
w. Here we again distinguish between three cases based on the production used in the
first step U —¢g a. Here @« = aF, o = bU, or a = cU, and these cases are dealt with
analogously.

Now we prove that {w € 1 | |w|, = 0mod 2} C L(G, E) and that {w € 7 | |w|, = 1
mod 2} C L(G,U). Thus, we actually prove the following statement:

Vn>1: (VweX™: (if jlwl =0 mod 2, then F —7, w) and
(if |[wle =1 mod 2, then U =% w)).

We proceed by induction on n.

e Basis of induction: n = 1: Then w € . If |w|, = 0 mod 2, then w = b or w = ¢, and
we see that E —¢ w. If jw|, = 1 mod 2, then w = a, and we see that U —¢ w.

e Induction hypothesis: The statement above holds for some n > 1.
e Inductive claim: The statement holds also for n + 1.

e Inductive step: Let w € X", Assume first that |w|, = 0 mod 2. We must show that
w € L(G, E). We distinguish between three cases based on the first letter of w.

(a) w = av: Then |v| = n and |v|, = 1 mod 2. By the induction hypothesis we have
U —¢ v. Hence, we obtain a derivation £ —g aU —¢, av = w.

(b) w = bv: Then |v] = n and |v|, = 0 mod 2. By the induciton hypothesis we have
E —¢ v. Hence, we obtain a derivation F —¢g bE —¢, bv = w.

(c) w = cv: Analogously to (b) it follows that E —% cv = w.
Assume now that |w|, = 1 mod 2. We must show that w € L(G,U). This is done
G

U
analogously to the previous case. Thus, we have shown that L(G,FE) = {w € X1 |
|w|, =0 mod 2} and that L(G,U) = {w € X7 | |w|, =1 mod 2 }. 0



