Automata and Grammars

Prof. Dr. Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany
E-mail: f.otto@uni-kassel.de
SS 2018

Lectures and Seminary SS 2018

Lectures:
Thursday 9:00-10:30, Room S 11
Start: Thursday, February 22, 2018, 9:00.
Seminary:
Thursday 10:40-12:10, Room S 11
Start: Thursday, February 22, 2018, 10:40.

Exercises:

From Thursday to Thursday next week!
To pass seminary:
At least two successful presentations in class (10 \%) and passing of midtem exam on April 5 (10:40-11:40) (20 \%)

Final Exam: (dates are still preliminary)
Written exam on May 31 (9:00-11:00)
or on June 14 (9:00-11:00) (50 \%)
Oral exam on June 14 or on June 28 (20 \%).
Moodle: Course "Automata and Grammars" NTIN071.

Literature:

P.J. Denning, J.E. Dennis, J.E. Qualitz; Machines, Languages, and Computation. Prentice-Hall, Englewood Cliffs, N.J., 1978.
M. Harrison; Introduction to Formal Language Theory. Addison-Wesley, Reading, M.A., 1978.
J.E. Hopcroft, R. Motwani, J.D. Ullman; Introduction to

Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, 2nd. ed., 2001.
H.R. Lewis, Ch.H. Papadimitriou;

Elements of the Theory of Computation.
Prentice Hall, Englewood Cliffs, N.J., 1981.
G. Rozenberg, A. Salomaa (editors);

Handbook of Formal Languages, Vol.1:
Word, Language, Grammar. Springer, Heidelberg, 1997.

1. Introduction

Formal Languages (not natural languages):
A formal language is a set of (finite) sequences of symbols (words, strings) from a fixed finite set of symbols (alphabet).
How to describe a formal language? There are various options:

- by a complete enumeration, but:

$$
L=\left\{w \in\{a, b, c\}^{*}| | w \mid=20\right\}:|L|=3^{20} \sim 3.5 \times 10^{9}
$$

- by a mathematical expression, but: how to check that a given word belongs to the language described?
- by a generative device: a grammar or a rewriting system.

A grammar tells you how to generate (all) the words of a language!

- by an analytical device: an automaton or an algorithm.

An automaton recognizes exactly the words of a given language!

The Roots of the Theory of Formal Languages:

- Combinatorics on Words (A. Thue 1906, 1912)
- Semigroup and Group Theory (M. Dehn 1911)
- Logic (A. Turing 1926, E. Post 1936, A. Church 1936)

Church's Thesis
A function is effectively computable iff there is a Turing machine that computes this function.

Let $f: \Sigma^{*} \leadsto \Gamma^{*}$ be a (partial) function.

$$
\begin{array}{lll}
\operatorname{dom}(f) & =\left\{u \in \Sigma^{*} \mid f(u) \text { is defined }\right\}: & \text { domain } \\
\operatorname{range}(f) & =\left\{v \in \Gamma^{*} \mid \exists u \in \Sigma^{*}: f(u)=v\right\}: & \text { range } \\
\operatorname{ker}(f) & =\left\{u \in \Sigma^{*} \mid f(u)=\varepsilon\right\}: & \text { kernel } \\
\operatorname{graph}(f) & =\{u \# f(u) \mid u \in \operatorname{dom}(f)\}: & \text { graph }
\end{array}
$$

f is computable iff there is an "algorithm" that accepts the language graph (f).
Classes of Automata: Restrictions of the Turing machine

- Linguistics
- Biology
(N. Chomsky 1956)
(A. Lindenmayer 1968) : L-systems
(T. Head 1987) : DNA-computing,
(G. Paun 1999)

H-systems
: phrase structure grammars
: Membrane computing, P-systems

Overview:
Chapter 2: Regular Languages and Finite Automata Chapter 3: Context-free Languages and Pushdown Automata Chapter 4: Context-sensitive Languages, Recursively Enumerable Languages and Turing Machines
Chapter 5: Summary

Chapter 2:

Regular Languages and Finite Automata

2.1. Words, Languages, and Morphisms

An alphabet Σ is a finite set of symbols or letters.
For all $n \in \mathbb{N}: \Sigma^{n}=\{u:[1, n] \rightarrow \Sigma\}$: set of words of length n over Σ, that is, $u=(u(1), u(2), \ldots, u(n))=u_{1} u_{2} \ldots u_{n}$.
$\Sigma^{0}=\{\varepsilon\}: \varepsilon=$ empty word
$\Sigma^{+}=\bigcup_{n \geq 1} \Sigma^{n}$: set of all non-empty words over Σ
$\Sigma^{*}=\bigcup_{n \geq 0} \Sigma^{n}$: set of all words over Σ
The concatenation $\cdot: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ is defined through $u \cdot v=u v$.
For $u \in \Sigma^{m}$ and $v \in \Sigma^{n}, u v \in \Sigma^{m+n}$.
The length function $||:. \Sigma^{*} \rightarrow \mathbb{N}$ is defined through $|u|=n$ for all $u \in \Sigma^{n}, n \geq 0$.

Lemma 2.1

(a) The operation of concatenation is associative, that is, $(u \cdot v) \cdot w=u \cdot(v \cdot w)$.
(b) For all $u \in \Sigma^{*}, u \cdot \varepsilon=\varepsilon \cdot u=u$.
(c) If $u \cdot v=u \cdot w$, then $v=w$ (Left cancellability).
(d) If $u \cdot w=v \cdot w$, then $u=v$ (Right cancellability).
(e) If $u \cdot v=x \cdot y$, then exactly one of the following cases holds:
(1) $|u|=|x|, u=x$, and $v=y$.
(2) $|u|>|x|$, and there exists $z \in \Sigma^{+}$such that $u=x \cdot z$ and $y=z \cdot v$.
(3) $|u|<|x|$, and there exists $z \in \Sigma^{+}$such that $x=u \cdot z$ and $v=z \cdot y$.

Abbreviations:
$u v$ stands for $u \cdot v$.
$u^{0}=\varepsilon, u^{1}=u, u^{n+1}=u^{n} u$ for all $u \in \Sigma^{*}, n \geq 1$.
Further Basic Notions:
The mirror function ${ }^{R}: \Sigma^{*} \rightarrow \Sigma^{*}$ is defined through

$$
\varepsilon^{R}=\varepsilon,(u a)^{R}=a u^{R} \text { for all } u \in \Sigma^{*}, a \in \Sigma
$$

Hence, $(a b b c)^{R}=c(a b b)^{R}=c b(a b)^{R}=c b b a$.
If $u v=w$, then u is a prefix and v is a suffix of w.
If $u \neq \varepsilon(v \neq \varepsilon)$, then v is a proper suffix (proper prefix) of w.
If $u v z=w$, then v is a factor of w.
It is a proper factor, if $u z \neq \varepsilon$.

A language L over Σ is a subset $L \subseteq \Sigma^{*}$.
The cardinality of L is denoted by $|L|$.
Let $L, L_{1}, L_{2} \subseteq \Sigma^{*}$.
$L_{1} \cdot L_{2}=\left\{u v \mid u \in L_{1}, v \in L_{2}\right\}$ is the product of L_{1} and L_{2}. It is also called the concatenation of L_{1} and L_{2}.
$L^{0}=\{\varepsilon\}, L^{1}=L, L^{n+1}=L^{n} \cdot L$ for all $(n \geq 1)$.
$L^{+}=\bigcup_{n \geq 1} L^{n}$ and $L^{*}=\bigcup_{n \geq 0} L^{n}$ are the plus closure and the star closure (Kleene closure) of L.
$L^{R}=\left\{w^{R} \mid w \in L\right\}$ is the mirror language of L.

Example:

(a) $\Sigma_{1}:=\{0,1\}: \quad \varepsilon, 0,10,110 \in \Sigma_{1}^{*}$.
$L_{1}=\left\{10^{i} \mid i \geq 0\right\}:$
$L_{1}^{R}=\left\{0^{j} 1 \mid j \geq 0\right\}$ und $L_{1} \cdot L_{1}^{R}=\left\{10^{i} 1 \mid i \geq 0\right\}$.
$L_{2}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
(b) $\Sigma_{2}:=\{a, b, c\}$:
$L_{3}=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}:$ marked palindromes of even length
$L_{4}=\left\{w w \mid w \in\{a, b\}^{*}\right\}:$ copy language
$L_{5}=\left\{\left.w| | w\right|_{a} \equiv 0 \bmod 2\right.$ and $\left.|w|_{b} \equiv 1 \bmod 3\right\}$.
(c) $\Sigma_{3}:=\{0,1, \ldots, 9, .,+,-, e\}: 112.45,-23 e+17 \in \Sigma_{3}^{+}$
$L_{6}=$ \{unsigned integer in PASCAL\}

Let Σ and Δ be two alphabets.
A mapping $h: \Sigma^{*} \rightarrow \Delta^{*}$ is a morphism, if the equality $h(u v)=h(u) \cdot h(v)$ holds for all $u, v \in \Sigma^{*}$.

Lemma 2.2

If $h: \Sigma^{*} \rightarrow \Delta^{*}$ is a morphism, then $h(\varepsilon)=\varepsilon$.
For a set $S, 2^{S}$ denotes the power set of S.
A mapping $\varphi: \Sigma^{*} \rightarrow 2^{\Delta^{*}}$ is a substitution, if the two following conditions are satisfied:
$-\forall u, v \in \Sigma^{*}: \varphi(u v)=\varphi(u) \cdot \varphi(v)$.
$-\varphi(\varepsilon)=\{\varepsilon\}$.
For $L \subseteq \Sigma^{*}, h(L)=\{h(w) \mid w \in L\}$ and $\varphi(L)=\bigcup_{w \in L} \varphi(w)$.

Example:

Let $\Sigma=\{a, b, c\}$ and $\Delta=\{0,1\}$.
If $h: \Sigma^{*} \rightarrow \Delta^{*}$ is defined through $a \mapsto 01, b \mapsto 1, c \mapsto \varepsilon$, then $h($ baca $)=10101$.
If $\varphi: \Sigma^{*} \rightarrow 2^{\Delta^{*}}$ is defined through

$$
a \mapsto\{01,001\}, b \mapsto\left\{1^{i} \mid i \geq 1\right\}, c \mapsto\{\varepsilon\},
$$

then $\varphi($ baca $)=\left\{1^{i} 0101,1^{i} 01001,1^{i} 00101,1^{i} 001001 \mid i \geq 1\right\}$.
A morphism h is called ε-free, if $h(a) \neq \varepsilon$ for all $a \in \Sigma$.
A substitution φ is called ε-free, if $\varepsilon \notin \varphi(a)$ for all $a \in \Sigma$.
A substitution φ is called finite, if $\varphi(a)$ is a finite set for all $a \in \Sigma$.
$h^{-1}: \Delta^{*} \rightarrow 2^{\Sigma^{*}}$ is defined through $h^{-1}(v)=\left\{u \in \Sigma^{*} \mid h(u)=v\right\}$.
$\varphi^{-1}: \Delta^{*} \rightarrow 2^{\Sigma^{*}}$ is defined through $\varphi^{-1}(v):=\left\{u \in \Sigma^{*} \mid v \in \varphi(u)\right\}$.
These reverse mappings are in general not substitutions!

2.2 Regulare Grammars

A semi-Thue system (string-rewriting system) on an alphabet Σ is a (finite) set S of pairs of words over Σ :

$$
S=\left\{\ell_{1} \rightarrow r_{1}, \ldots, \ell_{n} \rightarrow r_{n}\right\}\left(n \geq 0, \ell_{1}, \ldots, \ell_{n}, r_{1}, \ldots, r_{n} \in \Sigma^{*}\right) .
$$

S induces a number of binary relations on Σ^{*} :
\square the single-step derivation relation \rightarrow_{s} :

$$
u \rightarrow_{s} v \text { iff } \exists(\ell \rightarrow r) \in S \exists x, y \in \Sigma^{*}: u=x \ell y \text { and } v=x r y .
$$

■ the derivation relation \rightarrow_{S}^{*} :

$$
\begin{aligned}
& u \rightarrow{ }_{S}^{0} v \text { iff } u=v . \\
& u \rightarrow{ }_{S}^{1} v \text { iff } u \rightarrow s v . \\
& u \rightarrow S_{S}^{n+1} v \text { iff } \exists w \in \Sigma^{*}: u \rightarrow_{S}^{n} w \text { and } w \rightarrow_{S} v . \\
& u \rightarrow{ }_{S}^{+} v \text { iff } \exists n \geq 1: u \rightarrow_{S}^{n} v . \\
& u \rightarrow_{S}^{*} v \text { iff } \exists n \geq 0: u \rightarrow_{S}^{n} v .
\end{aligned}
$$

Lemma 2.3

(a) The relation \rightarrow_{S}^{*} is the smallest reflexive and transitive binary relation on Σ^{*} that contains $\rightarrow s$.
(b) If $u \rightarrow_{S}^{*} v$, then xuy $\rightarrow_{S}^{*} x v y$ for all $x, y \in \Sigma^{*}$.

A phrase-structure grammar G is a 4-tuple $G=(N, T, S, P)$, where

- N is a finite alphabet of nonterminals (variables),
- T is a finite alphabet of terminals (terminal symbols), where $N \cap T=\emptyset$,
- $S \in N$ is the start symbol, and
- $P \subseteq(N \cup T)^{*} \times(N \cup T)^{*}$ is a finite semi-Thue system on $N \cup T$, the elements of which are called productions. For each production $(\ell \rightarrow r) \in P$, it is required that $|\ell|_{N} \geq 1$.

For $A \in N$,

$$
\hat{L}(G, A)=\left\{\alpha \in(N \cup T)^{*} \mid A \rightarrow_{P}^{*} \alpha\right\}
$$

is the set of A-sentential forms, and

$$
L(G, A)=\left\{w \in T^{*} \mid A \rightarrow_{P}^{*} w\right\}
$$

is the set of terminal words that are derivable from A.
$\hat{L}_{G}=\hat{L}(G, S)$ is the set of sentential forms that are derivable in G and $L_{G}=L(G, S)$ is the language generated by G.
The grammar $G=(N, T, S, P)$ is called left regular, if $\ell \in N$ and $r \in T^{*} \cup N \cdot T^{*}$ for each production $(\ell \rightarrow r) \in P$.
G is called right regular, if $\ell \in N$ and $r \in T^{*} \cup T^{*} . N$ for each production $(\ell \rightarrow r) \in P$.
Finally, G is called regular, if it is left or right regular.

Example:

(a) $G_{1}=(N, T, S, P)$, where $N=\{S, A\}, T=\{0,1\}$ and $P=\{S \rightarrow 0 A, A \rightarrow 10 A, A \rightarrow \varepsilon\}$.
G_{1} is right regular, and $L\left(G_{1}\right)=\left\{0(10)^{i} \mid i \geq 0\right\}$.
(b) $G_{2}=(N, T, S, P)$, where $N=\{S\}, T=\{0,1\}$ and $P=\{S \rightarrow S 10, S \rightarrow 0\}$.
G_{2} is left regular, and $L\left(G_{2}\right)=\left\{0(10)^{i} \mid i \geq 0\right\}=L\left(G_{1}\right)$.

A language $L \subseteq \Sigma^{*}$ is called regular, if there exists a regular grammar G such that $L_{G}=L$.
$\operatorname{REG}(\Sigma)=$ set of regular languages on Σ
REG $=$ class of all regular languages

Remark 2.4

(a) Each finite language is regular.
(b) If L is a regular language, then so is its mirror language L^{R}.
(c) If $L \in \operatorname{REG}(\Sigma)$, and if $h: \Sigma^{*} \rightarrow \Delta^{*}$ is a morphism, then $h(L) \in \operatorname{REG}(\Delta)$, that is, the class REG is closed under morphisms.
(d) REG is also closed under finite substitutions.

A right regular grammar $G=(N, T, S, P)$ is in right normal form if $r \in T \cdot N \cup T$ for each production $(I \rightarrow r) \in P$. In addition, G may contain the production $(S \rightarrow \varepsilon)$, if S does not occur on the right-hand side of any production.
If G is in right normal form, then it does not contain any productions of the following forms:

■ $A \rightarrow \varepsilon(A \neq S)$: ε-rule,
■ $A \rightarrow B(A, B \in N)$: chain rule,
■ $A \rightarrow w B$ or $A \rightarrow w$, where $w \in T^{*},|w| \geq 2$.

Theorem 2.5

From a right regular grammar G, a grammar \hat{G} in right normal form can be constructed such that $L(\hat{G})=L(G)$.

Proof of Theorem 2.5.

Let $G=(N, T, S, P)$ be a right regular grammar that is not in right normal form. First we eliminate the ε-rules from P.
(1) Determine the set $N_{1}=\left\{A \in N \mid A \rightarrow_{P}^{*} \varepsilon\right\}$:
$N_{1}^{(1)}:=\{A \in N \mid(A \rightarrow \varepsilon) \in P\}$,
$N_{1}^{(k+1)}:=N_{1}^{(k)} \cup\left\{A \in N \mid \exists B \in N_{1}^{(k)}:(A \rightarrow B) \in P\right\}$.
Then $N_{1}=\bigcup_{k \geq 1} N_{1}^{(k)}=N_{1}^{(|N|)}$.
(2) Remove all ε-rules.
(3) For each production $B \rightarrow w A$, where $|w|>0$ and $A \in N_{1}$, add the production $B \rightarrow w$.
(4) If $S \in N_{1}$, then introduce a new start symbol \hat{S} and the productions $\hat{S} \rightarrow \varepsilon$ and $\hat{S} \rightarrow \alpha$ for each production $S \rightarrow \alpha$.

Example:

Let $G=(N, T, S, P)$, where $N=\{S, A, B, C, D\}, T=\{a, b\}$, and

$$
\begin{array}{rllll}
P=\{S \rightarrow \varepsilon, & S \rightarrow a b A, & S \rightarrow B, & A \rightarrow a b S, & A \rightarrow B, \\
& S \rightarrow C, & B \rightarrow b^{3} C, & B \rightarrow D, & C \rightarrow A,
\end{array} \quad C \rightarrow a a b,
$$

Elimination of ε-rules:
(1) $N_{1}^{(1)}=\{S, D\}, N_{1}^{(2)}=\{S, D, B\}, N_{1}^{(3)}=\{S, D, B, A\}$,

$$
N_{1}^{(4)}=\{S, D, B, A, C\}=N=N_{1} .
$$

(2) Delete productions $S \rightarrow \varepsilon$ and $D \rightarrow \varepsilon$.
(3) Add productions $S \rightarrow a b, A \rightarrow a b, B \rightarrow b b b$, and $D \rightarrow a b$.
(4) Introduce \hat{S} and $\hat{S} \rightarrow \varepsilon, \hat{S} \rightarrow a b A, \hat{S} \rightarrow a b$, and $\hat{S} \rightarrow B$.

Then $G_{1}=\left(N \cup\{\hat{S}\}, T, \hat{S}, P_{1}\right)$ is equivalent to G, where

$$
\begin{array}{rllll}
P_{1}=\left\{\begin{array}{llll}
\hat{S} \rightarrow \varepsilon, & \hat{S} \rightarrow a b A, & \hat{S} \rightarrow a b, & \hat{S} \rightarrow B, \\
& S \rightarrow a b A, \\
& S \rightarrow a b, & S \rightarrow B, & A \rightarrow a b S, \\
& A \rightarrow a b, & A \rightarrow B, \\
& S \rightarrow C, & B \rightarrow b^{3} C, & B \rightarrow b^{3}, \\
C \rightarrow D, & B \rightarrow A, \\
& B \rightarrow a b, & D \rightarrow a, & D \rightarrow a a b, \\
D \rightarrow a b D, & D \rightarrow a b\} .
\end{array} . \begin{array}{ll}
D \rightarrow a,
\end{array}\right)
\end{array}
$$

Proof of Theorem 2.5 (cont.).

Next we eliminate the chain-rules from P_{1}.
(1) Two nonterminals $A, B \in N_{1}$ are called equivalent $(A \leftrightarrow B)$ if $A \rightarrow{ }_{P_{1}}^{+} B$ and $B \rightarrow_{P_{1}}^{+} A$.
For $A \in N_{1},[A]=\left\{B \in N_{1} \mid A \leftrightarrow B\right\}$.
Pick $A^{\prime} \in[A]$ and replace all $B \in[A]$ in P_{1} by A^{\prime}.
Remove resulting productions of the form ($A^{\prime} \rightarrow A^{\prime}$).
(2) Order the remaining nonterminals such that $(A \rightarrow B) \in P_{1}$ implies $A<B$.
If B is the largest nonterminal occurring on the right-hand side of a chain-rule $A \rightarrow B$, then delete this chain-rule and add productions $A \rightarrow \alpha$ for all productions $B \rightarrow \alpha$.
(3) Repeat (2) until no chain-rules are left.

Example (cont.):

P_{1} contains the chain-rules

$$
\hat{S} \rightarrow B, S \rightarrow B, A \rightarrow B, B \rightarrow C, B \rightarrow D, \text { and } C \rightarrow A .
$$

Hence, $A \leftrightarrow B \leftrightarrow C$ and $[A]=\{A, B, C\}$.
We pick A as representative and replace B and C by A :

$$
\begin{aligned}
& P_{2}=\{\hat{S} \rightarrow \varepsilon, \quad \hat{S} \rightarrow a b A, \quad \hat{S} \rightarrow a b, \quad \hat{S} \rightarrow A, \quad S \rightarrow a b A, \\
& S \rightarrow a b, \quad S \rightarrow A, \quad A \rightarrow a b S, \quad A \rightarrow a b, \quad A \rightarrow A, \\
& A \rightarrow A, \quad A \rightarrow b^{3} A, \quad A \rightarrow b^{3}, \quad A \rightarrow D, \quad A \rightarrow A, \\
& A \rightarrow a a b, \quad D \rightarrow a, \quad D \rightarrow a a b, \quad D \rightarrow a b D, \quad D \rightarrow a b\} .
\end{aligned}
$$

To eliminate the chain-rule $A \rightarrow D$, add the productions $A \rightarrow a$ and $A \rightarrow a b D$.
To eliminate the chain-rules $\hat{S} \rightarrow A$ and $S \rightarrow A$, add corresponding productions with left-hand sides \hat{S} and S.

Example (cont.):

This process yields $G_{3}=\left(N_{3}, T, \hat{S}, P_{3}\right)$ with $N_{3}=\{\hat{S}, S, A, D\}$ and

$$
\begin{aligned}
P_{3}=\{ & \hat{S} \rightarrow \varepsilon|a b A| a b|a b S| b^{3} A\left|b^{3}\right| a a b|a| a b D, \\
& S \rightarrow a b A|a b| a b S\left|b^{3} A\right| b^{3}|a a b| a \mid a b D, \\
& A \rightarrow a b S|a b| b^{3} A\left|b^{3}\right| a a b|a| a b D, \\
& D \rightarrow a|a a b| a b D \mid a b\} .
\end{aligned}
$$

Proof of Theorem 2.5 (cont.).

Finally we eliminate long productions from P_{3}.
For each production $\left(A \rightarrow a_{1} a_{2} \cdots a_{m} B\right) \in P_{3}$, where $m \geq 2$, introduce new nonterminals $A_{1}, A_{2}, \ldots, A_{m-1}$, and replace the above production by
$A \rightarrow a_{1} A_{1}, A_{1} \rightarrow a_{2} A_{2}, \ldots, A_{m-2} \rightarrow a_{m-1} A_{m-1}, A_{m-1} \rightarrow a_{m} B$.
For each production $\left(A \rightarrow a_{1} a_{2} \cdots a_{m}\right) \in P_{3}$, where $m \geq 2$, introduce new nonterminals $A_{1}, A_{2}, \ldots, A_{m-1}$, and replace the above production by

$$
A \rightarrow a_{1} A_{1}, A_{1} \rightarrow a_{2} A_{2}, \ldots, A_{m-2} \rightarrow a_{m-1} A_{m-1}, A_{m-1} \rightarrow a_{m}
$$

The resulting grammar \hat{G} is in right normal form and $L(\hat{G})=L(G)$.

Example (cont.):

P_{3} contains the following A-productions:
$A \rightarrow a b S, A \rightarrow b^{3} A, A \rightarrow b^{3}, A \rightarrow a a b, A \rightarrow a b, A \rightarrow a$, and $A \rightarrow a b D$.
To replace the long ones, we introduce the nonterminals $A_{1}, A_{2}, \ldots, A_{9}$ and the following productions:

$$
\begin{array}{lllll}
A \rightarrow a A_{1}, & A_{1} \rightarrow b S, & A \rightarrow b A_{2}, & A_{2} \rightarrow b A_{3}, & A_{3} \rightarrow b A, \\
A \rightarrow b A_{4}, & A_{4} \rightarrow b A_{5}, & A_{5} \rightarrow b, & A \rightarrow a A_{6}, & A_{6} \rightarrow a A_{7}, \\
A_{7} \rightarrow b, & A \rightarrow a A_{8}, & A_{8} \rightarrow b, & A \rightarrow a A_{9}, & A_{9} \rightarrow b D .
\end{array}
$$

For example: $A \rightarrow a A_{1} \rightarrow a b S$,
$A \rightarrow b A_{2} \rightarrow b b A_{3} \rightarrow b b b A$,
$A \rightarrow a A_{6} \rightarrow a a A_{7} \rightarrow a a b$.
The long \hat{S} - and S-productions are replaced analogously.

