
Automata and Grammars

Prof. Dr. Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

E-mail: f.otto@uni-kassel.de

SS 2018

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 1 / 294

Lectures and Seminary SS 2018
Lectures:

Thursday 9:00 - 10:30, Room S 11

Start: Thursday, February 22, 2018, 9:00.

Seminary:
Thursday 10:40 - 12:10, Room S 11

Start: Thursday, February 22, 2018, 10:40.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 2 / 294

Exercises:
From Thursday to Thursday next week!
To pass seminary:
At least two successful presentations in class (10 %)
and passing of midtem exam on April 5 (10:40 - 11:40) (20 %)

Final Exam: (dates are still preliminary)
Written exam on May 31 (9:00 - 11:00)
or on June 14 (9:00 - 11:00) (50 %)
Oral exam on June 14 or on June 28 (20 %).

Moodle: Course ”Automata and Grammars” NTIN071.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 3 / 294

Literature:

P.J. Denning, J.E. Dennis, J.E. Qualitz;
Machines, Languages, and Computation.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

M. Harrison; Introduction to Formal Language Theory.
Addison-Wesley, Reading, M.A., 1978.

J.E. Hopcroft, R. Motwani, J.D. Ullman; Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, 2nd. ed., 2001.

H.R. Lewis, Ch.H. Papadimitriou;
Elements of the Theory of Computation.
Prentice Hall, Englewood Cliffs, N.J., 1981.

G. Rozenberg, A. Salomaa (editors);
Handbook of Formal Languages, Vol.1:
Word, Language, Grammar. Springer, Heidelberg, 1997.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 4 / 294

1. Introduction

1. Introduction

Formal Languages (not natural languages):
A formal language is a set of (finite) sequences of symbols (words,
strings) from a fixed finite set of symbols (alphabet).

How to describe a formal language? There are various options:

- by a complete enumeration, but:

L = {w ∈ {a, b, c}∗ | |w | = 20 } : |L| = 320 ∼ 3.5 × 109

- by a mathematical expression, but: how to check that a given word
belongs to the language described?

- by a generative device: a grammar or a rewriting system.
A grammar tells you how to generate (all) the words of a language!
- by an analytical device: an automaton or an algorithm.
An automaton recognizes exactly the words of a given language!

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 5 / 294

1. Introduction

The Roots of the Theory of Formal Languages:

- Combinatorics on Words (A. Thue 1906, 1912)
- Semigroup and Group Theory (M. Dehn 1911)
- Logic (A. Turing 1926, E. Post 1936, A. Church 1936)

Church’s Thesis
A function is effectively computable iff there is a Turing machine that
computes this function.

Let f : Σ∗ ❀ Γ∗ be a (partial) function.
dom(f) = { u ∈ Σ∗ | f (u) is defined } : domain
range(f) = { v ∈ Γ∗ | ∃u ∈ Σ∗ : f (u) = v } : range
ker(f) = { u ∈ Σ∗ | f (u) = ε } : kernel
graph(f) = { u#f (u) | u ∈ dom(f) } : graph

f is computable iff there is an “algorithm” that accepts the language
graph(f).
Classes of Automata: Restrictions of the Turing machine

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 6 / 294

1. Introduction

- Linguistics (N. Chomsky 1956) : phrase structure grammars

- Biology (A. Lindenmayer 1968) : L-systems

(T. Head 1987) : DNA-computing,
H-systems

(G. Paun 1999) : Membrane computing,
P-systems

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 7 / 294

1. Introduction

Overview:

Chapter 2: Regular Languages and Finite Automata
Chapter 3: Context-free Languages and Pushdown Automata
Chapter 4: Context-sensitive Languages, Recursively Enumera-

ble Languages and Turing Machines
Chapter 5: Summary

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 8 / 294

2. Regular Languages and Finite Automata

Chapter 2:

Regular Languages and Finite Automata

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 9 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

2.1. Words, Languages, and Morphisms

An alphabet Σ is a finite set of symbols or letters.
For all n ∈ N : Σn = {u : [1, n] → Σ}: set of words of length n over Σ,
that is, u = (u(1), u(2), . . . , u(n)) = u1u2 . . . un.

Σ0 = {ε} : ε = empty word

Σ+ =
�

n≥1
Σn : set of all non-empty words over Σ

Σ∗ =
�

n≥0
Σn : set of all words over Σ

The concatenation · : Σ∗ × Σ∗ → Σ∗ is defined through u · v = uv .
For u ∈ Σm and v ∈ Σn, uv ∈ Σm+n.

The length function |.| : Σ∗ → N is defined through
|u| = n for all u ∈ Σn, n ≥ 0.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 10 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

Lemma 2.1

(a) The operation of concatenation is associative, that is,
(u · v) · w = u · (v · w).

(b) For all u ∈ Σ∗, u · ε = ε · u = u.
(c) If u · v = u · w, then v = w (Left cancellability).
(d) If u · w = v · w, then u = v (Right cancellability).
(e) If u · v = x · y, then exactly one of the following cases holds:

(1) |u| = |x |, u = x, and v = y.

(2) |u| > |x |, and there exists z ∈ Σ+ such that
u = x · z and y = z · v.

(3) |u| < |x |, and there exists z ∈ Σ+ such that
x = u · z and v = z · y.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 11 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

Abbreviations:
uv stands for u · v .
u0 = ε, u1 = u, un+1 = unu for all u ∈ Σ∗, n ≥ 1.

Further Basic Notions:
The mirror function R : Σ∗ → Σ∗ is defined through

εR = ε, (ua)R = auR for all u ∈ Σ∗, a ∈ Σ.
Hence, (abbc)R = c(abb)R = cb(ab)R = cbba.

If uv = w , then u is a prefix and v is a suffix of w .
If u �= ε (v �= ε), then v is a proper suffix (proper prefix) of w .
If uvz = w , then v is a factor of w .
It is a proper factor, if uz �= ε.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 12 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

A language L over Σ is a subset L ⊆ Σ∗.

The cardinality of L is denoted by |L|.

Let L, L1, L2 ⊆ Σ∗.

L1 · L2 = {uv | u ∈ L1, v ∈ L2 } is the product of L1 and L2.
It is also called the concatenation of L1 and L2.

L0 = {ε}, L1 = L, Ln+1 = Ln · L for all (n ≥ 1).

L+ =
�

n≥1
Ln and L∗ =

�
n≥0

Ln are the plus closure and the star closure

(Kleene closure) of L.

LR = {wR | w ∈ L } is the mirror language of L.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 13 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

Example:

(a) Σ1 := {0, 1} : ε, 0, 10, 110 ∈ Σ∗
1.

L1 = {10i | i ≥ 0 }:
LR

1 = {0j1 | j ≥ 0 } und L1 · LR
1 = {10i1 | i ≥ 0 }.

L2 = {0n1n | n ≥ 1 }.

(b) Σ2 := {a, b, c} :

L3 = {wcwR | w ∈ {a, b}∗ }: marked palindromes of even length
L4 = {ww | w ∈ {a, b}∗ }: copy language
L5 = {w | |w |a ≡ 0 mod 2 and |w |b ≡ 1 mod 3 }.

(c) Σ3 := {0, 1, . . . , 9, .,+,−, e} : 112.45,−23e + 17 ∈ Σ+
3

L6 = {unsigned integer in PASCAL}

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 14 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

Let Σ and Δ be two alphabets.
A mapping h : Σ∗ → Δ∗ is a morphism, if
the equality h(uv) = h(u) · h(v) holds for all u, v ∈ Σ∗.

Lemma 2.2

If h : Σ∗ → Δ∗ is a morphism, then h(ε) = ε.

For a set S, 2S denotes the power set of S.

A mapping ϕ : Σ∗ → 2Δ∗
is a substitution, if

the two following conditions are satisfied:

– ∀u, v ∈ Σ∗ : ϕ(uv) = ϕ(u) · ϕ(v).
– ϕ(ε) = {ε}.

For L ⊆ Σ∗, h(L) = {h(w) | w ∈ L } and ϕ(L) =
�

w∈L
ϕ(w).

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 15 / 294

2. Regular Languages and Finite Automata 2.1. Words, Languages, and Morphisms

Example:

Let Σ = {a, b, c} and Δ = {0, 1}.
If h : Σ∗ → Δ∗ is defined through a �→ 01, b �→ 1, c �→ ε,
then h(baca) = 10101.

If ϕ : Σ∗ → 2Δ∗
is defined through

a �→ {01, 001}, b �→ {1i | i ≥ 1}, c �→ {ε},
then ϕ(baca) = {1i0101, 1i01001, 1i00101, 1i001001 | i ≥ 1 }.

A morphism h is called ε-free, if h(a) �= ε for all a ∈ Σ.
A substitution ϕ is called ε-free, if ε �∈ ϕ(a) for all a ∈ Σ.
A substitution ϕ is called finite, if ϕ(a) is a finite set for all a ∈ Σ.

h−1 : Δ∗ → 2Σ∗
is defined through h−1(v) = { u ∈ Σ∗ | h(u) = v }.

ϕ−1 : Δ∗ → 2Σ∗
is defined through ϕ−1(v) := { u ∈ Σ∗ | v ∈ ϕ(u) }.

These reverse mappings are in general not substitutions!

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 16 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

2.2 Regulare Grammars

A semi-Thue system (string-rewriting system) on an alphabet Σ is a
(finite) set S of pairs of words over Σ :

S = {�1 → r1, . . . , �n → rn} (n ≥ 0, �1, . . . , �n, r1, . . . , rn ∈ Σ∗).

S induces a number of binary relations on Σ∗:
the single-step derivation relation →S:
u →S v iff ∃(� → r) ∈ S ∃x , y ∈ Σ∗ : u = x�y and v = xry .
the derivation relation →∗

S:
u →0

S v iff u = v .
u →1

S v iff u →S v .
u →n+1

S v iff ∃w ∈ Σ∗ : u →n
S w and w →S v .

u →+
S v iff ∃n ≥ 1 : u →n

S v .
u →∗

S v iff ∃n ≥ 0 : u →n
S v .

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 17 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Lemma 2.3

(a) The relation →∗
S is the smallest reflexive and transitive binary

relation on Σ∗ that contains →S.
(b) If u →∗

S v, then xuy →∗
S xvy for all x , y ∈ Σ∗.

A phrase-structure grammar G is a 4-tuple G = (N,T ,S,P), where
– N is a finite alphabet of nonterminals (variables),
– T is a finite alphabet of terminals (terminal symbols), where

N ∩ T = ∅,
– S ∈ N is the start symbol, and
– P ⊆ (N ∪ T)∗ × (N ∪ T)∗ is a finite semi-Thue system on N ∪ T ,

the elements of which are called productions.
For each production (� → r) ∈ P, it is required that |�|N ≥ 1.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 18 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

For A ∈ N,
L̂(G,A) = {α ∈ (N ∪ T)∗ | A →∗

P α }
is the set of A-sentential forms, and

L(G,A) = {w ∈ T ∗ | A →∗
P w }

is the set of terminal words that are derivable from A.

L̂G = L̂(G,S) is the set of sentential forms that are derivable in G
and LG = L(G,S) is the language generated by G.
The grammar G = (N,T ,S,P) is called left regular, if � ∈ N and
r ∈ T ∗ ∪ N · T ∗ for each production (� → r) ∈ P.
G is called right regular, if � ∈ N and r ∈ T ∗ ∪ T ∗ · N for each
production (� → r) ∈ P.
Finally, G is called regular, if it is left or right regular.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 19 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Example:

(a) G1 = (N,T ,S,P), where N = {S,A}, T = {0, 1} and
P = {S → 0A,A → 10A,A → ε}.
G1 is right regular, and L(G1) = { 0(10)i | i ≥ 0 }.

(b) G2 = (N,T ,S,P), where N = {S}, T = {0, 1} and
P = {S → S10,S → 0}.
G2 is left regular, and L(G2) = { 0(10)i | i ≥ 0 } = L(G1).

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 20 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

A language L ⊆ Σ∗ is called regular, if there exists a regular grammar
G such that LG = L.

REG(Σ) = set of regular languages on Σ

REG = class of all regular languages

Remark 2.4

(a) Each finite language is regular.
(b) If L is a regular language, then so is its mirror language LR.
(c) If L ∈ REG(Σ), and if h : Σ∗ → Δ∗ is a morphism, then

h(L) ∈ REG(Δ), that is, the class REG is closed under
morphisms.

(d) REG is also closed under finite substitutions.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 21 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

A right regular grammar G = (N,T ,S,P) is in right normal form if
r ∈ T · N ∪ T for each production (l → r) ∈ P. In addition, G may
contain the production (S → ε), if S does not occur on the right-hand
side of any production.

If G is in right normal form, then it does not contain any productions of
the following forms:

A → ε (A �= S): ε-rule,
A → B (A,B ∈ N): chain rule,
A → wB or A → w , where w ∈ T ∗, |w | ≥ 2.

Theorem 2.5

From a right regular grammar G, a grammar Ĝ in right normal form can
be constructed such that L(Ĝ) = L(G).

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 22 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Proof of Theorem 2.5.

Let G = (N,T ,S,P) be a right regular grammar that is not in right
normal form. First we eliminate the ε-rules from P.
(1) Determine the set N1 = {A ∈ N | A →∗

P ε }:
N(1)

1 := {A ∈ N | (A → ε) ∈ P },
N(k+1)

1 := N(k)
1 ∪ {A ∈ N | ∃B ∈ N(k)

1 : (A → B) ∈ P }.
Then N1 =

�
k≥1 N(k)

1 = N(|N|)
1 .

(2) Remove all ε-rules.
(3) For each production B → wA, where |w | > 0 and A ∈ N1,

add the production B → w .
(4) If S ∈ N1, then introduce a new start symbol Ŝ and

the productions Ŝ → ε and Ŝ → α for each production S → α.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 23 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Example:

Let G = (N,T ,S,P), where N = {S,A,B,C,D}, T = {a, b}, and
P = {S → ε, S → abA, S → B, A → abS, A → B,

B → C, B → b3C, B → D, C → A, C → aab,
D → ε, D → a, D → aab, D → abD}.

Elimination of ε-rules:
(1) N(1)

1 = {S,D}, N(2)
1 = {S,D,B}, N(3)

1 = {S,D,B,A},
N(4)

1 = {S,D,B,A,C} = N = N1.
(2) Delete productions S → ε and D → ε.
(3) Add productions S → ab, A → ab, B → bbb, and D → ab.
(4) Introduce Ŝ and Ŝ → ε, Ŝ → abA, Ŝ → ab, and Ŝ → B.

Then G1 = (N ∪ {Ŝ},T , Ŝ,P1) is equivalent to G, where
P1 = {Ŝ → ε, Ŝ → abA, Ŝ → ab, Ŝ → B, S → abA,

S → ab, S → B, A → abS, A → ab, A → B,

B → C, B → b3C, B → b3, B → D, C → A,
C → aab, D → a, D → aab, D → abD, D → ab}.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 24 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Proof of Theorem 2.5 (cont.).

Next we eliminate the chain-rules from P1.

(1) Two nonterminals A,B ∈ N1 are called equivalent (A ↔ B)
if A →+

P1
B and B →+

P1
A.

For A ∈ N1, [A] = {B ∈ N1 | A ↔ B }.
Pick A� ∈ [A] and replace all B ∈ [A] in P1 by A�.
Remove resulting productions of the form (A� → A�).

(2) Order the remaining nonterminals such that
(A → B) ∈ P1 implies A < B.
If B is the largest nonterminal occurring
on the right-hand side of a chain-rule A → B,
then delete this chain-rule and
add productions A → α for all productions B → α.

(3) Repeat (2) until no chain-rules are left.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 25 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Example (cont.):

P1 contains the chain-rules
Ŝ → B, S → B, A → B, B → C, B → D, and C → A.

Hence, A ↔ B ↔ C and [A] = {A,B,C}.
We pick A as representative and replace B and C by A:

P2 = {Ŝ → ε, Ŝ → abA, Ŝ → ab, Ŝ → A, S → abA,
S → ab, S → A, A → abS, A → ab, A → A,
A → A, A → b3A, A → b3, A → D, A → A,
A → aab, D → a, D → aab, D → abD, D → ab}.

To eliminate the chain-rule A → D,
add the productions A → a and A → abD.

To eliminate the chain-rules Ŝ → A and S → A, add corresponding
productions with left-hand sides Ŝ and S.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 26 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Example (cont.):

This process yields G3 = (N3,T , Ŝ,P3) with N3 = {Ŝ,S,A,D} and
P3 = {Ŝ → ε | abA | ab | abS | b3A | b3 | aab | a | abD,

S → abA | ab | abS | b3A | b3 | aab | a | abD,

A → abS | ab | b3A | b3 | aab | a | abD,
D → a | aab | abD | ab}.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 27 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Proof of Theorem 2.5 (cont.).

Finally we eliminate long productions from P3.

For each production (A → a1a2 · · · amB) ∈ P3, where m ≥ 2,
introduce new nonterminals A1,A2, . . . ,Am−1, and
replace the above production by
A → a1A1,A1 → a2A2, . . . ,Am−2 → am−1Am−1,Am−1 → amB.

For each production (A → a1a2 · · · am) ∈ P3, where m ≥ 2,
introduce new nonterminals A1,A2, . . . ,Am−1, and
replace the above production by
A → a1A1,A1 → a2A2, . . . ,Am−2 → am−1Am−1,Am−1 → am.

The resulting grammar Ĝ is in right normal form and L(Ĝ) = L(G).

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 28 / 294

2. Regular Languages and Finite Automata 2.2 Regulare Grammars

Example (cont.):

P3 contains the following A-productions:

A → abS, A → b3A, A → b3, A → aab, A → ab, A → a, and A → abD.

To replace the long ones, we introduce the nonterminals A1,A2, . . . ,A9
and the following productions:

A → aA1, A1 → bS, A → bA2, A2 → bA3, A3 → bA,
A → bA4, A4 → bA5, A5 → b, A → aA6, A6 → aA7,
A7 → b, A → aA8, A8 → b, A → aA9, A9 → bD.

For example: A → aA1 → abS,
A → bA2 → bbA3 → bbbA,
A → aA6 → aaA7 → aab.

The long Ŝ- and S-productions are replaced analogously.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 29 / 294

