On the Hypothesis That Animals Are Automata, and Its History Thomas H. Huxley ... Thus far, the propositions respecting the physiology of the nervous system which are stated by Descartes have simply been more clearly defined, more fully illustrated, and, for the most part, demonstrated, by modern physiological research. But there remains a doctrine to which Descartes attached great weight, so that full acceptance of it became a sort of note of a thoroughgoing Cartesian, but which, nevertheless, is so opposed to ordinary prepossessions that it attained more general notoriety, and gave rise to more discussion, than almost any other Cartesian hypothesis. It is the doctrine that brute animals are mere machines or automata, devoid not only of reason, but of any kind of consciousness, which is stated briefly in the "Discours de la Méthode," and more fully in the "Réponses aux Quatrièmes Objections," and in the correspondence with Henry More.1 The process of reasoning by which Descartes arrived at this startling conclusion is well shown in the following passage of the "Réponses":— But as regards the souls of beasts, although this is not the place for considering them, and though, without a general exposition of physics, I can say no more on this subject than I have already said in the fifth part of my Treatise on Method; yet, I will further state, here, that it appears to me to be a very remarkable circumstance that no movement can take place, either in the bodies of beasts, or even in our own, if these bodies have not in themselves all the organs and instruments by means of which the very same movements would be accomplished in a machine. So that, even in us, the spirit, or the soul, does not directly move the limbs, but only determines the course of that very subtle liquid which is called the animal spirits, which, running continually from the heart by the brain into the muscles, is the cause of all the movements of our limbs, and often may cause many different motions, one as easily as the other. And it does not even always exert this determination; for among the movements which take place in us, there are many which do not depend on the mind at all, such as the beating of the heart, the digestion of food, the nutrition, the respiration of those who sleep; and even in those who are awake, walking, singing, and other similar actions, when they are performed without the mind thinking about them. And, when one who falls from a height throws his hands forward to save his head, it is in virtue of no ratiocination that he performs this action; it does not depend upon his mind, but takes place merely because his senses being affected by the present danger, some change arises in his brain which determines the animal spirits to pass thence into the nerves, in such a manner as is required to produce this motion, in the same way as in a machine, and without the mind being able to hinder it. Now since we observe this in ourselves, why should we be so much astonished if the light reflected from the body of a wolf into the eye of a sheep has the same force to excite in it the motion of flight? After having observed this, if we wish to learn by reasoning, whether certain movements of beasts are comparable to those which are effected in us by the operation of the mind, or, on the contrary, to those which depend only on the animal spirits and the disposition of the organs, it is necessary to consider the difference between the two, which I have explained in the fifth part of the Discourse on Method (for I do not think that any others are discoverable), and then it will easily be seen, that all the actions of beasts are similar only to those which we perform without the help of our minds. For which reason we shall be forced to conclude, that we know of the existence in them of no other principle of motion than the disposition of their organs and the continual affluence of animal spirits produced by the heat of the heart, which attenuates and subtilises the blood; and, at the same time, we shall acknowledge that we have had no reason for assuming any other principle, except that, not having distinguished these two principles of motion, and seeing that the one, which depends only on the animal spirits and the organs, exists in beasts as well as in us, we have hastily concluded that the other, which depends on mind and on thought, was also possessed by them. Descartes' line of argument is perfectly clear. He starts from reflex action in man, from the unquestionable fact that, in ourselves, co-ordinate, purposive, actions may take place, without the intervention of consciousness or volition, or even contrary to the latter. As actions of a certain degree of complexity are brought about by mere mechanism, why may not actions of still greater complexity be the result of a more refined mechanism? What proof is there that brutes are other than a superior race of marionettes, which eat without pleasure, cry without pain, desire nothing, know nothing, and only simulate intelligence as a bee simulates a mathematician?² The Port Royalists adopted the hypothesis that brutes are machines, and are said to have carried its practical applications so far as to treat domestic animals with neglect, if not with actual cruelty. As late as the middle of the eighteenth century, the problem was discussed very fully and ably by Bouillier, in his "Essai philosophique sur l'Ame des Bêtes," while Condillac deals with it in his "Traite des Animaux"; but since then it has received little attention. Nevertheless, modern research has brought to light a great multitude of facts, which not only show that Descartes' view is defensible, but render it far more defensible than it was in his day. It must be premised, that it is wholly impossible absolutely to prove the presence or absence of consciousness in anything but one's own brain, though, by analogy, we are justified in assuming its existence in other men. Now if, by some accident, a man's spinal cord is divided, his limbs are paralysed, so far as his volition is concerned, below the point of injury; and he is incapable of experiencing all those states of consciousness which, in his uninjured state, would be excited by irritation of those nerves which come off below the injury. If the spinal cord is divided in the middle of the back, for example, the skin of the feet may be cut, or pinched, or burned, or wetted with vitriol, without any sensation of touch, or of pain, arising in consciousness. So far as the man is concerned, therefore, the part of the central nervous system which lies beyond the injury is cut off from consciousness. It must indeed be admitted, that, if any one think fit to maintain that the spinal cord below the injury is conscious, but that it is cut off from any means of making its consciousness known to the other consciousness in the brain, there is no means of driving him from his position by logic. But assuredly there is no way of proving it, and in the matter of consciousness, if in anything, we may hold by the rule, "De non apparentibus et de non existentibus eadem est ratio." However near the brain the spinal cord is injured, consciousness remains intact, except that the irritation of parts below the injury is no longer represented by sensation. On the other hand, pressure upon the anterior division of the brain, or extensive injuries to it, abolish consciousness. Hence, it is a highly probable conclusion, that consciousness in man depends upon the integrity of the anterior division of the brain, while the middle and hinder divisions of the brain,³ and the rest of the nervous centres, have nothing to do with it. And it is further highly probable, that what is true for man is true for other vertebrated animals. We may assume, then, that in a living vertebrated animal, any segment of the cerebrospinal axis (or spinal cord and brain) separated from that anterior division of the brain which is the organ of consciousness, is as completely incapable of giving rise to consciousness as we know it to be incapable of carrying out volitions. Nevertheless, this separated segment of the spinal cord is not passive and inert. On the contrary, it is the seat of extremely remarkable powers. In our imaginary case of injury, the man would, as we have seen, be devoid of sensation in his legs, and would have not the least power of moving them. But, if the soles of his feet were tickled, the legs would be drawn up just as vigorously as they would have been before the injury. We know exactly what happens when the soles of the feet are tickled; a molecular change takes place in the sensory nerves of the skin, and is propagated along them and through the posterior roots of the spinal nerves, which are constituted by them, to the grey matter of the spinal cord. Through that grey matter the molecular motion is reflected into the anterior roots of the same nerves, constituted by the filaments which supply the muscles of the legs, and, travelling along these motor filaments, reaches the muscles, which at once contract, and cause the limbs to be drawn up. In order to move the legs in this way, a definite co-ordination of muscular contractions is necessary; the muscles must contract in a certain order and with duly proportioned force; and moreover, as the feet are drawn away from the source of irritation, it may be said that the action has a final cause, or is purposive. Thus it follows, that the grey matter of the segment of the man's spinal cord, though it is 26 FOUNDATIONS devoid of consciousness, nevertheless responds to a simple stimulus by giving rise to a complex set of muscular contractions, co-ordinated towards a definite end, and serving an obvious purpose. If the spinal cord of a frog is cut across, so as to provide us with a segment separated from the brain, we shall have a subject parallel to the injured man, on which experiments can be made without remorse; as we have a right to conclude that a frog's spinal cord is not likely to be conscious, when a man's is not. Now the frog behaves just as the man did. The legs are utterly paralysed, so far as voluntary movement is concerned; but they are vigorously drawn up to the body when any irritant is applied to the foot. But let us study our frog a little farther. Touch the skin of the side of the body with a little acetic acid, which gives rise to all the signs of great pain in an uninjured frog. In this case, there can be no pain, because the application is made to a part of the skin supplied with nerves which come off from the cord below the point of section; nevertheless, the frog lifts up the limb of the same side, and applies the foot to rub off the acetic acid; and, what is still more remarkable, if the limb be held so that the frog cannot use it, it will, by and by, move the limb of the other side, turn it across the body, and use it for the same rubbing process. It is impossible that the frog, if it were in its entirety and could reason, should perform actions more purposive than these: and yet we have most complete assurance that, in this case, the frog is not acting from purpose, has no consciousness, and is a mere insensible machine. But now suppose that, instead of making a section of the cord in the middle of the body, it had been made in such a manner as to separate the hindermost division of the brain from the rest of the organ, and suppose the foremost twothirds of the brain entirely taken away. The frog is then absolutely devoid of any spontaneity; it sits upright in the attitude which a frog habitually assumes; and it will not stir unless it is touched; but it differs from the frog which I have just described in this, that, if it be thrown into the water, it begins to swim, and swims just as well as the perfect frog does. But swimming requires the combination and successive coordination of a great number of muscular actions. And we are forced to conclude, that the impression made upon the sensory nerves of the skin of the frog by the contact with the water into which it is thrown, causes the transmission to the central nervous apparatus of an impulse which sets going a certain machinery by which all the muscles of swimming are brought into play in due co-ordination. If the frog be stimulated by some irritating body, it jumps or walks as well as the complete frog can do. The simple sensory impression, acting through the machinery of the cord, gives rise to these complex combined movements. It is possible to go a step farther. Suppose that only the anterior division of the brain-so much of it as lies in front of the "optic lobes"-is removed. If that operation is performed quickly and skilfully, the frog may be kept in a state of full bodily vigour for months, or it may be for years; but it will sit unmoved. It sees nothing: it hears nothing. It will starve sooner than feed itself, although food put into its mouth is swallowed. On irritation, it jumps or walks; if thrown into the water it swims. If it be put on the hand, it sits there, crouched, perfectly quiet, and would sit there for ever. If the hand be inclined very gently and slowly, so that the frog would naturally tend to slip off, the creature's fore paws are shifted on to the edge of the hand, until he can just prevent himself from falling. If the turning of the hand be slowly continued, he mounts up with great care and deliberation, putting first one leg forward and then another, until he balances himself with perfect precision upon the edge; and if the turning of the hand is continued, he goes through the needful set of muscular operations, until he comes to be seated in security, upon the back of the hand. The doing of all this requires a delicacy of coordination, and a precision of adjustment of the muscular apparatus of the body, which are only comparable to those of a ropedancer. To the ordinary influences of light, the frog, deprived of its cerebral hemispheres, appears to be blind. Nevertheless, if the animal be put upon a table, with a book at some little distance between it and the light, and the skin of the hinder part of its body is then irritated, it will jump forward, avoiding the book by passing to the right or left of it. Therefore, although the frog appears to have no sensation of light, visible objects act through its brain upon the motor mechanism of its body.4 It is obvious, that had Descartes been acquainted with these remarkable results of modern research, they would have furnished him with far more powerful arguments than he possessed in favour of his view of the automatism of brutes. The habits of a frog, leading its natural life, involve such simple adaptations to sur- rounding conditions, that the machinery which is competent to do so much without the intervention of consciousness, might well do all. And this argument is vastly strengthened by what has been learned in recent times of the marvellously complex operations which are performed mechanically, and to all appearance without consciousness, by men, when, in consequence of injury or disease, they are reduced to a condition more or less comparable to that of a frog, in which the anterior part of the brain has been removed. A case has recently been published by an eminent French physician, Dr. Mesnet, which illustrates this condition so remarkably, that I make no apology for dwelling upon it at considerable length.5 A sergeant of the French army, F-, twentyseven years of age, was wounded during the battle of Bazeilles, by a ball which fractured his left parietal bone. He ran his bayonet through the Prussian soldier who wounded him, but almost immediately his right arm became paralysed; after walking about two hundred yards, his right leg became similarly affected, and he lost his senses. When he recovered them, three weeks afterwards, in hospital at Mayence, the right half of the body was completely paralysed, and remained in this condition for a year. At present, the only trace of the paralysis which remains is a slight weakness of the right half of the body. Three or four months after the wound was inflicted, periodical disturbances of the functions of the brain made their appearance, and have continued ever since. The disturbances last from fifteen to thirty hours; the intervals at which they occur being from fifteen to thirty days. For four years, therefore, the life of this man has been divided into alternating phases—short abnormal states intervening between long normal states. In the periods of normal life, the exsergeant's health is perfect; he is intelligent and kindly, and performs, satisfactorily, the duties of a hospital attendant. The commencement of the abnormal state is ushered in by uneasiness and a sense of weight about the forehead, which the patient compares to the constriction of a circle of iron; and, after its termination, he complains, for some hours, of dulness and heaviness of the head. But the transition from the normal to the abnormal state takes place in a few minutes, without convulsions or cries, and without anything to indicate the change to a bystander. His movements remain free and his expression calm, except for a contraction of the brow, an in- cessant movement of the eyeballs, and a chewing motion of the jaws. The eyes are wide open, and their pupils dilated. If the man happens to be in a place to which he is accustomed, he walks about as usual; but, if he is in a new place, or if obstacles are intentionally placed in his way, he stumbles gently against them, stops, and then, feeling over the objects with his hands, passes on one side of them. He offers no resistance to any change of direction which may be impressed upon him, or to the forcible acceleration or retardation of his movements. He eats, drinks, smokes, walks about, dresses and undresses himself, rises and goes to bed at the accustomed hours. Nevertheless, pins may be run into his body, or strong electric shocks sent through it, without causing the least indication of pain; no odorous substance, pleasant or unpleasant, makes the least impression; he eats and drinks with avidity whatever is offered, and takes asafœtida, or vinegar, or quinine, as readily as water; no noise affects him; and light influences him only under certain conditions. Dr. Mesnet remarks, that the sense of touch alone seems to persist, and indeed to be more acute and delicate than in the normal state: and it is by means of the nerves of touch, almost exclusively, that his organism is brought into relation with the external world. Here a difficulty arises. It is clear from the facts detailed, that the nervous apparatus by which, in the normal state, sensations of touch are excited, is that by which external influences determine the movements of the body, in the abnormal state. But does the state of consciousness, which we term a tactile sensation, accompany the operation of this nervous apparatus in the abnormal state? or is consciousness utterly absent, the man being reduced to an insensible mechanism? ... As I have pointed out, it is impossible to prove that F— is absolutely unconscious in his abnormal state, but it is no less impossible to prove the contrary; and the case of the frog goes a long way to justify the assumption that, in the abnormal state, the man is a mere insensible machine. If such facts as these had come under the knowledge of Descartes, would they not have formed an apt commentary upon that remarkable passage in the "Traité de l'Homme," which I have quoted elsewhere, but which is worth repetition?— All the functions which I have attributed to this machine (the body), as the digestion of food, the pulsation of the heart and of the arteries; the nu- 28 FOUNDATIONS trition and the growth of the limbs; respiration, wakefulness, and sleep; the reception of light, sounds, odours, flavours, heat, and such like qualities, in the organs of the external senses; the impression of the ideas of these in the organ of common sensation and in the imagination; the retention or the impression of these ideas on the memory; the internal movements of the appetites and the passions; and lastly the external movements of all the limbs, which follow so aptly, as well the action of the objects which are presented to the senses, as the impressions which meet in the memory, that they imitate as nearly as possible those of a real man; I desire, I say, that you should consider that these functions in the machine naturally proceed from the mere arrangement of its organs, neither more nor less than do the movements of a clock, or other automaton, from that of its weights and its wheels; so that, so far as these are concerned, it is not necessary to conceive any other vegetative or sensitive soul, nor any other principle of motion or of life, than the blood and the spirits agitated by the fire which burns continually in the heart, and which is no wise essentially different from all the fires which exist in inanimate bodies. And would Descartes not have been justified in asking why we need deny that animals are machines, when men, in a state of unconsciousness, perform, mechanically, actions as complicated and as seemingly rational as those of any animals? But though I do not think that Descartes' hypothesis can be positively refuted, I am not disposed to accept it. The doctrine of continuity is too well established for it to be permissible to me to suppose that any complex natural phenomenon comes into existence suddenly, and without being preceded by simpler modifications; and very strong arguments would be needed to prove that such complex phenomena as those of consciousness, first make their appearance in man. We know, that, in the individual man, consciousness grows from a dim glimmer to its full light, whether we consider the infant advancing in years, or the adult emerging from slumber and swoon. We know, further, that the lower animals possess, though less developed, that part of the brain which we have every reason to believe to be the organ of consciousness in man; and as, in other cases, function and organ are proportional, so we have a right to conclude it is with the brain; and that the brutes, though they may not possess our intensity of consciousness, and though, from the absence of language, they can have no trains of thoughts, but only trains of feelings, yet have a consciousness which, more or less distinctly, foreshadows our own. I confess that, in view of the struggle for existence which goes on in the animal world, and of the frightful quantity of pain with which it must be accompanied, I should be glad if the probabilities were in favour of Descartes' hypothesis; but, on the other hand, considering the terrible practical consequences to domestic animals which might ensue from any error on our part, it is as well to err on the right side, if we err at all, and deal with them as weaker brethren, who are bound, like the rest of us, to pay their toll for living, and suffer what is needful for the general good. As Hartley finely says, "We seem to be in the place of God to them"; and we may justly follow the precedents He sets in nature in our dealings with them. But though we may see reason to disagree with Descartes' hypothesis that brutes are unconscious machines, it does not follow that he was wrong in regarding them as automata. They may be more or less conscious, sensitive, automata; and the view that they are such conscious machines is that which is implicitly, or explicitly, adopted by most persons. When we speak of the actions of the lower animals being guided by instinct and not by reason, what we really mean is that, though they feel as we do, yet their actions are the results of their physical organisation. We believe, in short, that they are machines, one part of which (the nervous system) not only sets the rest in motion, and co-ordinates its movements in relation with changes in surrounding bodies, but is provided with special apparatus, the function of which is the calling into existence of those states of consciousness which are termed sensations, emotions, and ideas. I believe that this generally accepted view is the best expression of the facts at present known. It is experimentally demonstrable—any one who cares to run a pin into himself may perform a sufficient demonstration of the fact—that a mode of motion of the nervous system is the immediate antecedent of a state of consciousness. All but the adherents of "Occasionalism," or of the doctrine of "Pre-established Harmony" (if any such now exist), must admit that we have as much reason for regarding the mode of motion of the nervous system as the cause of the state of consciousness, as we have for regarding any event as the cause of another. How the one phenomenon causes the other we know, as much or as little, as in any other case of causation; but we have as much right to believe that the sensation is an effect of the molecular change, as we have to believe that motion is an effect of impact; and there is as much propriety in saying that the brain evolves sensation, as there is in saying that an iron rod, when hammered, evolves heat. As I have endeavoured to show, we are justified in supposing that something analogous to what happens in ourselves takes place in the brutes, and that the affections of their sensory nerves give rise to molecular changes in the brain, which again give rise to, or evolve, the corresponding states of consciousness. Nor can there be any reasonable doubt that the emotions of brutes, and such ideas as they possess, are similarly dependent upon molecular brain changes. Each sensory impression leaves behind a record in the structure of the brain-an "ideagenous" molecule, so to speak, which is competent, under certain conditions, to reproduce, in a fainter condition, the state of consciousness which corresponds with that sensory impression; and it is these "ideagenous molecules" which are the physical basis of memory. It may be assumed, then, that molecular changes in the brain are the causes of all the states of consciousness of brutes. Is there any evidence that these states of consciousness may, conversely, cause those molecular changes which give rise to muscular motion? I see no such evidence. The frog walks, hops, swims, and goes through his gymnastic performances quite as well without consciousness, and consequently without volition, as with it; and, if a frog, in his natural state, possesses anything corresponding with what we call volition, there is no reason to think that it is anything but a concomitant of the molecular changes in the brain which form part of the series involved in the production of motion. The consciousness of brutes would appear to be related to the mechanism of their body simply as a collateral product of its working, and to be as completely without any power of modifying that working as the steam-whistle which accompanies the work of a locomotive engine is without influence upon its machinery. Their volition, if they have any, is an emotion indicative of physical changes, not a cause of such changes. This conception of the relations of states of consciousness with molecular changes in the brain—of *psychoses* with *neuroses*—does not prevent us from ascribing free will to brutes. For an agent is free when there is nothing to prevent him from doing that which he desires to do. If a greyhound chases a hare, he is a free agent, because his action is in entire accordance with his strong desire to catch the hare; while so long as he is held back by the leash he is not free, being prevented by external force from following his inclination. And the ascription of freedom to the greyhound under the former circumstances is by no means inconsistent with the other aspect of the facts of the case—that he is a machine impelled to the chase, and caused, at the same time, to have the desire to catch the game by the impression which the rays of light proceeding from the hare make upon his eyes, and through them upon his brain. Much ingenious argument has at various times been bestowed upon the question: How is it possible to imagine that volition, which is a state of consciousness, and, as such, has not the slightest community of nature with matter in motion, can act upon the moving matter of which the body is composed, as it is assumed to do in voluntary acts? But if, as is here suggested, the voluntary acts of brutes-or, in other words, the acts which they desire to performare as purely mechanical as the rest of their actions, and are simply accompanied by the state of consciousness called volition, the inquiry, so far as they are concerned, becomes superfluous. Their volitions do not enter into the chain of causation of their actions at all. The hypothesis that brutes are conscious automata is perfectly consistent with any view that may be held respecting the often discussed and curious question whether they have souls or not; and, if they have souls, whether those souls are immortal or not. It is obviously harmonious with the most literal adherence to the text of Scripture concerning "the beast that perisheth"; but it is not inconsistent with the amiable conviction ascribed by Pope to his "untutored savage," that when he passes to the happy huntinggrounds in the sky, "his faithful dog shall bear him company." If the brutes have consciousness and no souls, then it is clear that, in them. consciousness is a direct function of material changes; while, if they possess immaterial subjects of consciousness, or souls, then, as consciousness is brought into existence only as the consequence of molecular motion of the brain, it follows that it is an indirect product of material changes. The soul stands related to the body as the bell of a clock to the works, and consciousness answers to the sound which the bell gives out when it is struck. Thus far I have strictly confined myself to the problem with which I proposed to deal at starting—the automatism of brutes. The question is, I believe, a perfectly open one, and I feel happy in running no risk of either Papal or Presbyterian condemnation for the views which I have ventured to put forward. And there are so very few interesting questions which one is, at present, allowed to think out scientifically—to go as far as reason leads, and stop where evidence comes to an end-without speedily being deafened by the tattoo of "the drum ecclesiastic"that I have luxuriated in my rare freedom, and would now willingly bring this disquisition to an end if I could hope that other people would go no farther. Unfortunately, past experience debars me from entertaining any such hope, even if ... that drum's discordant sound Parading round and round and round, were not, at present, as audible to me as it was to the mild poet who ventured to express his hatred of drums in general, in that well-known couplet. It will be said, that I mean that the conclusions deduced from the study of the brutes are applicable to man, and that the logical consequences of such application are fatalism, materialism, and atheism—whereupon the drums will beat the *pas de charge*. One does not do battle with drummers; but I venture to offer a few remarks for the calm consideration of thoughtful persons, untrammelled by foregone conclusions, unpledged to shore-up tottering dogmas, and anxious only to know the true bearings of the case. It is quite true that, to the best of my judgment, the argumentation which applies to brutes holds equally good of men; and, therefore, that all states of consciousness in us, as in them, are immediately caused by molecular changes of the brain-substance. It seems to me that in men, as in brutes, there is no proof that any state of consciousness is the cause of change in the motion of the matter of the organism. If these positions are well based, it follows that our mental conditions are simply the symbols in consciousness of the changes which takes place automatically in the organism; and that, to take an extreme illustration, the feeling we call volition is not the cause of a voluntary act, but the symbol of that state of the brain which is the immediate cause of that act. We are conscious automata, endowed with free will in the only intelligible sense of that much-abused term-inasmuch as in many respects we are able to do as we likebut nonetheless parts of the great series of causes and effects which, in unbroken continuity, composes that which is, and has been, and shall be-the sum of existence. . . . ## **NOTES** - Réponse de M. Descartes a M. Morus. 1649. Œuevres, tome x. p. 204. "Mais le plus grand de tous les préjugés que nous ayons retenus de notre enfance, est celui de croire que les bêtes pensent," etc. - 2. Malebranche states the view taken by orthodox Cartesians in 1689 very forcibly: "Ainsi dans les chiens, les chats, et les autres animaux, il n'y a ny intelligence, ny âme spirituelle comme on l'entend ordinairement. Ils mangent sans plaisir; ils crient sans douleur; ils croissent sans le sçavoir; ils ne desirent rien; ils ne connoissent rien; et s'ils agissent avec adresse et d'une maniere qui marque l'intelligence, c'est que Dieu les faisant pour les conserver, il a conformé leurs corps de telle manière, qu'ils évitent organiquement, sans le sçavoir, tout ce qui peut les de truire et qu'ils semblent craindre." Feuillet de Conches. Méditations Métaphysiques et Correspon- - dance de. N. Malebranche. Neuvième Méditation. 1841. - Not to be confounded with the anterior middle and hinder parts of the hemispheres of the cerebrum. - See the remarkable essay of Göltz, Beitrage zur Lehre von den Functionen der Nervencentren des Frosches, published in 1809. I have repeated Göltz's experiments, and obtained the same results. - 5. "De l'Automatisme de la Mémoire et du Souvenir, dans le Somnambulisme pathologique." Par le Dr. E. Mesnet, Médecin de l'Hôpital Saint-Antoine. L'Union Médicale, Juillet 21 et 23, 1874. My attention was first called to a summary of this remarkable case, which appeared in the Journal des Débats for the 7th of August, 1874, by my friend General Strachey, F.R.S.