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Abstract 20 

Scientists should be able to provide support for the absence of a meaningful effect. Currently 21 

researchers often incorrectly conclude an effect is absent based a non-significant result. A widely 22 

recommended approach within a Frequentist framework is to test for equivalence. In equivalence 23 

tests, such as the Two One-Sided Tests (TOST) procedure discussed in this article, an upper and 24 

lower equivalence bound is specified based on the smallest effect size of interest. The TOST 25 

procedure can be used to statistically reject the presence of effects large enough to be considered 26 

worthwhile. This practical primer with accompanying spreadsheet and R package enables 27 

psychologists to easily perform equivalence tests (and power analyses) by setting equivalence 28 

bounds based on standardized effect sizes, and provides recommendations to pre-specify 29 

equivalence bounds. Extending your statistical toolkit with equivalence tests might very well be the 30 

easiest way for psychologists to improve their statistical and theoretical inferences. 31 

 32 

 33 

 34 

Author Note: The TOSTER spreadsheet and supplementary material is available from 35 

https://osf.io/q253c/. The TOSTER R package can be installed in R using: library(devtools); 36 

install_github("Lakens/TOSTER") and is available from https://github.com/Lakens/TOSTER.  37 

  38 

https://osf.io/q253c/
https://github.com/Lakens/TOSTER
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Equivalence Tests:  

A Practical Primer for t-Tests, Correlations, and Meta-Analyses. 

Scientists should be able to provide support for the null-hypothesis. A limitation of the 39 

widespread use of traditional significance tests, where the null hypothesis is that the true effect size is 40 

zero, is that the absence of an effect can be rejected, but not statistically supported. When you perform 41 

a statistical test, and the outcome is a p-value larger than the alpha level α (e.g., p > 0.05), the only 42 

formally correct conclusion is that the data are not surprising, assuming the null hypothesis is true. It 43 

is not possible to conclude there is no effect when p > α – our test might simply have lacked the 44 

statistical power to detect a true effect. 45 

It is statistically impossible to support the hypothesis that a true effect size is exactly zero. 46 

What is possible in a Frequentist hypothesis testing framework is to statistically reject effects large 47 

enough to be deemed worthwhile. When researchers want to argue for the absence of an effect that is 48 

large enough to be worthwhile to examine, they can test for equivalence (Wellek, 2010). By rejecting 49 

an effect (indicated in this article by Δ) more extreme than pre-determined lower and upper 50 

equivalence bounds (–ΔL and ΔU, for example effect sizes of Cohen’s d = -0.3 and d = 0.3), we can act 51 

as if the true effect is close enough to zero for our practical purposes. Equivalence testing originates 52 

from the field of pharmacokinetics (Hauck & Anderson, 1984), where researchers sometimes want to 53 

show that a new cheaper drug works just as well as an existing drug (for an overview, see Senn, 2007, 54 

chapters 15 and 22). A very simple equivalence testing approach is the ‘two-one-sided t-tests’ (TOST) 55 

procedure (Schuirmann, 1987). In the TOST procedure an upper (ΔU) and lower (–ΔL) equivalence 56 

bound is specified based on the smallest effect size of interest (e.g., a positive or negative difference 57 

of d = 0.3). Two composite null hypotheses are tested: H01: Δ ≤ –ΔL and H02: Δ ≥ ΔU. When both 58 

these one-sided tests can be statistically rejected, we can conclude that –ΔL < Δ < ΔU, or that the 59 

observed effect falls within the equivalence bounds and is close enough to zero to be practically 60 

equivalent (Seaman & Serlin, 1998). 61 

Psychologists often incorrectly conclude there is no effect based on a non-significant test 62 

result. For example, the words “no effect” had been used in 108 articles published in SPPS up to 63 

August 2016. Manual inspection revealed that in almost all of these articles, the conclusion of ‘no 64 
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effect’ was based on statistical non-significance. Finch, Cumming, and Thomason (2001) reported 65 

that in the Journal of Applied Psychology a stable average of around 38% of articles with non-66 

significant results accept the null hypothesis in previous years. This practice is problematic. With 67 

small sample sizes, non-significant test results are hardly indicative of the absence of a true effect, and 68 

with huge sample sizes, effects can be statistically significant, but practically and theoretically 69 

irrelevant. Equivalence tests, which are conceptually straightforward, easy to perform, and highly 70 

similar to widely used hypothesis significance tests that aim to reject a null-effect, are a 71 

straightforward but underused approach to reject the possibility that an effect more extreme than the 72 

smallest effect size of interest exists (Anderson & Maxwell, 2016). 73 

Psychologists would gain a lot by embracing equivalence tests. First, researchers often 74 

incorrectly use non-significance to claim the absence of an effect (e.g., “there were no gender effects, 75 

p > .10”). This incorrect interpretation of p-values would be more easily recognized and should 76 

become less common in the scientific literature if equivalence tests were better known and more 77 

widely used. Second, where traditional significance test only allows researchers to reject the null 78 

hypothesis, science needs statistical approaches that allow us to conclude meaningful effects are 79 

absent (Dienes, 2016). Finally, the strong reliance on hypothesis significance tests that merely aim to 80 

reject a null-effect does not require researchers to think about the effect size under the alternative 81 

hypothesis. Exclusively focusing on rejecting a null-effect has been argued to lead to imprecise 82 

hypotheses (Gigerenzer, 1998). Equivalence testing invites researchers to make more specific 83 

predictions about the effect size they find worthwhile to examine. 84 

There have been previous attempts to introduce equivalence testing to psychology 85 

(Quertemont, 2011; Rogers, Howard, & Vessey, 1993; Seaman & Serlin, 1998). I believe there are 86 

four reasons why previous attempts have largely failed. First, there is a lack of easily accessible 87 

software to perform equivalence tests. To solve this problem, I’ve created an easy to use spreadsheet 88 

and R package to perform equivalence tests for independent and dependent t-tests, correlations, and 89 

meta-analyses (see https://osf.io/q253c/). These tests can be performed based on summary statistics, 90 

which researchers in my experience find convenient (Lakens, 2013). Second, in pharmacokinetics the 91 

equivalence bounds are often defined in raw scores, whereas it might be more intuitive for researchers 92 

https://osf.io/q253c/
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in psychology to express equivalence bounds in standardized effect sizes. This makes it easier to 93 

perform power analyses for equivalence tests (which can also be done with the accompanying 94 

spreadsheet and R package), and to compare equivalence bounds across studies in which different 95 

measures are used. Third, there is no single article that discusses both power analyses and statistical 96 

tests for one-sample, dependent and independent t-tests, correlations, and meta-analyses, which are all 97 

common in psychology. Finally, guidance on how to set equivalence boundaries has been absent for 98 

psychologists, given that there are often no specific theoretical limitations on how small effects are 99 

predicted to be (Morey & Lakens, under review), nor cost-benefit boundaries of when effects are too 100 

small to be practically meaningful. This is a chicken-egg problem, since using equivalence tests will 101 

likely stimulate researchers to specify which effect sizes are predicted by a theory (Weber & Popova, 102 

2012). To bootstrap the specification of equivalence bounds in psychology, I propose that when 103 

theoretical or practical boundaries on meaningful effect sizes are absent, researchers set the bounds to 104 

the smallest effect size they have sufficient power to detect, which is determined by the resources they 105 

have available to study an effect. 106 

Testing for Equivalence 107 

In this article, I will focus on the TOST procedure (Schuirmann, 1987) of testing for 108 

equivalence, because of its simplicity and widespread use in other scientific disciplines. The goal in 109 

the TOST approach is to specify a lower and upper bound, such that results falling within this range 110 

are deemed equivalent to the absence of an effect that is worthwhile to examine (e.g., ΔL = -0.3 to ΔU 111 

= 0.3, where Δ is a difference that can be defined by either standardized differences such as Cohen’s 112 

d, or raw differences such as 0.3 scale point on a 5-point scale). In the TOST procedure the null 113 

hypothesis is the presence of a true effect of ΔL or ΔU, and the alternative hypothesis is an effect that 114 

falls within the equivalence bounds, or the absence of an effect that is worthwhile to examine. The 115 

observed data is compared against ΔL and ΔU in two one-sided tests. If the p-value for both tests 116 

indicates the observed data is surprising, assuming – ΔL or ΔU are true, we can follow a Neyman-117 

Pearson approach to statistical inferences and reject effect sizes larger than the equivalence bounds. 118 

When making such a statement, we will not be wrong more often, in the long run, than our Type 1 119 

error rate (e.g., 5%). It is also possible to test for inferiority, or the hypothesis that the effect is smaller 120 
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than an upper equivalence bound, by setting the lower equivalence bound to ∞.1 Furthermore, 121 

equivalence bounds can be symmetric around zero (ΔL = -0.3 to ΔU = 0.3) or asymmetric (ΔL = -0.2 to 122 

ΔU = 0.4).  123 

When NHST and equivalence tests are both used, there are four possible outcomes of a study: 124 

The effect can be significant (statistically different from zero), equivalent (statistically larger than ΔL 125 

and smaller than ΔU), significant and equivalent, or undetermined (neither statistically significant, nor 126 

statistically equivalent). In Figure 1, mean differences (black squares) and their 90% (thick lines) and 127 

95% confidence intervals (thin lines) are illustrated for four scenarios. To conclude equivalence 128 

(scenario A), the 90% confidence interval around the observed mean difference should exclude the ΔL 129 

and ΔU values of -0.5 and 0.5 (indicated by black vertical dashed lines)2. 130 

 131 

 132 

Figure 1. Mean differences (black squares) and 90% confidence intervals (thick horizontal lines) and 133 

95% confidence intervals (thin horizontal lines) with equivalence bounds ΔL = -0.5 and ΔU= 0.5 for 134 

equivalent, significant, significant and equivalent, and non-significant and non-equivalent test results. 135 

 136 

The traditional two-sided null hypothesis significance test is rejected (scenario B) when the 137 

confidence interval around the mean difference does not include 0 (the vertical grey dotted line). 138 

Effects can be significant and equivalent (scenario C) when the 90% confidence interval excluded the 139 
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equivalence bounds, and the 95% confidence interval excluded zero. Finally, an effect can be 140 

undetermined, or non-significant and non-equivalent (scenario D) when the 90% confidence interval 141 

includes one of the equivalence bounds, and the 95% confidence interval includes zero. 142 

In this article, the focus lies on the TOST procedure, where two p-values are calculated. 143 

Readers are free to replace decisions based on p-values by decisions based on 90% confidence 144 

intervals if they wish. Formally, hypothesis testing and estimation are distinct approaches (Cumming 145 

& Finch, 2001). For example, while sample size planning based on confidence intervals focusses on 146 

the width of confidence intervals, sample size planning for hypothesis testing uses power analysis to 147 

estimate the probability of observing a significant result (Maxwell, Kelley, & Rausch, 2008). Since 148 

the TOST procedure is based on a Neyman-Pearson hypothesis testing approach to statistics, and I’ll 149 

explain how to calculate the tests, as well as how to perform power analysis, I’ll focus on the 150 

calculation of p-values for conceptual consistency. 151 

Equivalence tests for differences between two independent means 152 

The TOST procedure entails performing two one-sided tests to examine whether the observed 153 

data is surprisingly larger than a lower equivalence boundary (ΔL), or surprisingly smaller than an 154 

upper equivalence boundary (ΔU). The equivalence test assuming equal variances is based on: 155 

 𝑡𝐿 =
𝑀̅1−𝑀̅2−𝛥𝐿

𝜎√
1

𝑛1
+

1

𝑛2

 and 𝑡𝑈 =
𝑀̅1−𝑀̅2−𝛥𝑈

𝜎√
1

𝑛1
+

1

𝑛2

 (1) 

where M1 and M2 indicate the means of each sample, n1 and n2 are the sample size in each 156 

group, and σ is the pooled standard deviation: 157 

 
σ = √

(𝑛1−1)𝑆𝐷1
2+(𝑛2−1)𝑆𝐷2

2

𝑛1+ 𝑛2−2
 

(2) 

Even though Student’s t-test is by far the most popular t-test in psychology, there is general agreement 158 

that whenever the number of observations are unequal across both conditions Welch’s t-test (1938), 159 

which does not rely on the assumption of equal variances, should be performed by default (Delacre, 160 

Lakens, & Leys, 2016; Ruxton, 2006). The equivalence test not assuming equal variances is based on: 161 

 𝑡𝐿 =
𝑀̅1−𝑀̅2−𝛥𝐿

√
𝑆𝐷1

2

𝑛1
+

𝑆𝐷2
2

𝑛2

 and 𝑡𝑈 =
𝑀̅1−𝑀̅2−𝛥𝑈

√
𝑆𝐷1

2

𝑛1
+

𝑆𝐷2
2

𝑛2

 (3) 
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where the degrees of freedom for Welch’s t-test are based on the Sattherthwaite (1946) correction: 162 

 

dfw = 
(

𝑆𝐷1
2

𝑛1
 + 

𝑆𝐷2
2

𝑛2
)

(𝑆𝐷1
2/𝑛1)

2

𝑛1−1
+ 

(𝑆𝐷2
2/𝑛2)

2

𝑛2−1

 

(4) 

These formulas are highly similar to the Student’s and Welch’s t-statistic for traditional 163 

significance tests. The only difference is that the lower equivalence bound ΔL and the upper 164 

equivalence bound ΔU are subtracted from the mean difference between groups. These bounds can be 165 

defined in raw scores or in a standardized difference, where Δ = Cohen’s d×σ, or Cohen’s d = Δ/σ. 166 

The two one-sided tests are rejected if tU ≤ -t(df, α), and tL ≥ t(df, α), where t(α, df) is the upper 100α 167 

percentile of a t distribution (Berger & Hsu, 1996). The spreadsheet and R package can be used to 168 

perform this test, but some commercial software such as Minitab also includes the option to perform 169 

equivalence tests for t-tests. 170 

As an example, Eskine (2013) showed that participants who had been exposed to organic food 171 

were substantially harsher in their moral judgments relative to those in the control condition (d = 0.81, 172 

95% CI [0.19, 1.45]). A replication by Moery and Calin-Jageman, (2016, Study 2) did not observe a 173 

significant effect (Control: n = 95, M = 5.25, SD = 0.95, Organic Food: n = 89, M = 5.22, SD = 0.83). 174 

The authors followed Simonsohn's (2015) recommendation so set the equivalence bound to the effect 175 

size the original study had 33% power to detect. With n = 21 in each condition of the original study, 176 

this means the equivalence bound is d = 0.48, which equals a difference of 0.384 on a 7-point scale 177 

given the sample sizes and a pooled standard deviation of 0.894). We can calculate the TOST 178 

equivalence test t-values: 179 

5.25−5.22−(−0.384)

0.894√
1

95
+

1

89

= 𝑡𝐿 = 3.14, and 
5.25−5.22−0.384

0.894√
1

95
+

1

89

= 𝑡𝑈 = −2.69 180 

which correspond to p-values of 0.001 and 0.004. If alpha = 0.05, and assuming equal 181 

variances, the equivalence test is significant, t(182) = -2.69, p = 0.004. We can reject effects larger 182 

than 0.384 scale points. Note that both one-sided tests need to be significant to declare equivalence, 183 

but for efficiency only the one-sided test with the highest p-value is reported in TOST results (given 184 

that if this test is significant, so is the other). Alternatively, because Moery and Calin-Jageman’s 185 

(2016) main prediction seems to be whether the effect smaller than the upper equivalence bound (a 186 
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test for inferiority) only the one-sided t-test against the upper equivalence bound could be performed 187 

and reported. Note that the spreadsheet and R package allow you to either directly specify the 188 

equivalence bounds in Cohen’s d, or set the equivalence bound in raw units. 189 

An a-priori power analysis for equivalence tests can be performed by calculating the required 190 

sample sizes to declare equivalence for two one-sided tests based on the lower equivalence bound and 191 

upper equivalence bound. When equivalence bounds are symmetric around zero (e.g., 𝛥L = -0.5 and 192 

𝛥U = 0.5) the required sample sizes (referred to as nL and nU in Formula 5 below) will be identical. 193 

Following Chow, Shao, and Wang (2002) the normal approximation of the power formula for 194 

equivalence tests (for each independent group of an independent t-test) given a specific α level and 195 

desired level of statistical power (1-β) is: 196 

 
𝑛𝐿 =

2(𝑧𝛼 + 𝑧𝛽/2)2

𝛥𝐿
2 , 𝑛𝑈 =

2(𝑧𝛼 + 𝑧𝛽/2)2

𝛥𝑈
2  

(5) 

where 𝛥L and 𝛥U are the standardized mean difference equivalence bounds (in Cohen’s d). 197 

This formula calculates the required sample sizes based on the assumption that the true effect size is 198 

zero (see Table 1). If a non-zero true effect size is expected, an iterative procedure must be used. An 199 

excellent and highly accessible overview of power analysis for equivalence, superiority, and non-200 

inferiority designs, with power tables for a wide range of standardized mean differences and expected 201 

true mean differences that can be used to decide upon the sample size in your study is available from 202 

Julious (2004). 203 

  204 
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Table 1. Sample sizes (for the number of observations in each group) for equivalence tests for 205 

independent means, as a function of the desired power, alpha level, and equivalence bound Δ (in 206 

Cohen’s d), based on exact calculations and the approximation. 207 

Bound 

(Δ)  

Approximation Exact 

80% power 90% power 80% power 90% power 

α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 

0.1 1713 2604 2165 3155 1713 2604 2165 3155 

0.2 429 651 542 789 429 652 542 789 

0.3 191 290 241 351 191 291 242 351 

0.4 108 163 136 198 108 165 136 199 

0.5 69 105 87 127 70 106 88 128 

0.6 48 73 61 88 49 74 61 89 

0.7 35 54 45 65 36 55 45 66 

0.8 27 41 34 50 28 43 35 51 

 208 

The narrower the equivalence bounds, or the smaller the effect sizes one tries to reject, the 209 

larger the sample size that is required. Large sample sizes are required to achieve high power when 210 

equivalence bounds are close to zero. This is comparable to the large sample sizes that are required to 211 

reject a true but small effect when the null hypothesis is a null-effect. Equivalence tests require 212 

slightly larger sample sizes than traditional null hypothesis tests. Because two consecutive one-sided 213 

tests are performed in a row and both should be statistically significant, each individual test must have 214 

higher power for two tests in a row to have the desired power (Senn, 2007, p. 242). For example, 215 

when each test has 0.89 power, two tests in a row have 0.89 × 0.89 = 0.8 power. 216 

Equivalence tests for differences between dependent means 217 

When comparing dependent means, the correlation between the observations has to be taken 218 

into account, and the effect size directly related to the statistical significance of the test (and thus used 219 

in power analysis) is Cohen’s dz (see Lakens, 2013). The t-values for the two one-sided tests statistics 220 

are: 221 
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 𝑡𝐿 =
𝑀̅1−𝑀̅2−𝛥𝐿

√𝑆𝐷1
2+ 𝑆𝐷2

2− 2 ⨯𝑟 ⨯𝑆𝐷1⨯𝑆𝐷2

√𝑁

 and 𝑡𝑈 =
𝑀̅1−𝑀̅2−𝛥𝑈

√𝑆𝐷1
2+ 𝑆𝐷2

2− 2 ⨯𝑟 ⨯𝑆𝐷1⨯𝑆𝐷2

√𝑁

 (6) 

The bounds ΔL and ΔU can be defined in raw scores, or in a standardized bound based on 222 

Cohen’s dz, where Δ = dz×SDdiff, or dz = Δ/SDdiff. Formula 3 can be used for a-priori power analyses 223 

by inserting Cohen’s dz instead of Cohen’s d. The number of pairs needed to achieve a desired level of 224 

power when using Cohen’s dz is half the number of observations needed in each between subject 225 

condition specified in Table 1. 226 

There are no suggested benchmarks of small, medium, and large effects for Cohen’s dz. We 227 

can consider two approaches to determining benchmarks. The first is to use the same benchmarks for 228 

Cohen’s d as for Cohen’s dz. This simply ignores the correlation between dependent variables (or 229 

assumes r = 0.5, when Cohen’s d and Cohen’s dz are identical)3. A second approach is to scale the 230 

benchmarks for Cohen’s dz based on the sample size we need reliably detect an effect. For example, in 231 

an independent t-test, 176 participants are required in each condition to achieve 80% power for d = 232 

0.3 and α = 0.05. With 176 pairs of observations and α = 0.05, a study has 80% power for a Cohens’ 233 

dz of 0.212. The relationship between d and dz is simply a factor of √2, which means we can translate 234 

the benchmarks for Cohen’s d for small (0.2), medium (0.5) and large (0.8) into benchmarks for 235 

Cohen’s dz of small (0.14), medium (0.35) and large (0.57). There is no objectively correct way to set 236 

benchmarks for Cohen’s dz, and I leave it up to the reader to determine whether either of these 237 

approaches is useful. 238 

Equivalence tests for one-sample t-tests 239 

The t-values for the two one-sided tests for a one-sample t-tests are: 240 

 𝑡𝐿 =
𝑀−𝜇−𝛥𝐿

𝑆𝐷

√𝑁

 and 𝑡𝑈 =
𝑀−𝜇−𝛥𝑈

𝑆𝐷

√𝑁

 (7) 

where M is the observed mean, SD is the observed standard deviation, N is the sample size, 241 

𝛥𝐿 and 𝛥𝑈 are lower and upper equivalence bounds, and μ is the value that the mean is tested against. 242 

Equivalence tests for correlations 243 

Equivalence tests can also be performed on correlations, where the two one-sided tests aim to 244 

reject correlations larger than a lower equivalence bound (rL) and smaller than an upper equivalence 245 
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bound (rU). I follow Goertzen and Cribbie (2010), who use Fisher’s z transformation on the 246 

correlations, after which critical values are calculated that can be compared against the normal 247 

distribution: 248 

 

𝑍𝐿 =  

𝐿𝑁 (
1 + 𝑟
1 − 𝑟)

2
−

𝐿𝑁 (
1 + 𝑟𝐿
1 − 𝑟𝐿

)

2
1

√𝑁 − 3

, 𝑍𝑈 =  

𝐿𝑁 (
1 + 𝑟
1 − 𝑟)

2
−

𝐿𝑁 (
1 + 𝑟𝑈
1 − 𝑟𝑈

)

2
1

√𝑁 − 3

  

(8) 

The two one-sided tests are rejected if ZL ≤ -Zα, and ZU ≥ Zα. Benchmarks for small, medium, 249 

and large effects, which can be used to set equivalence bounds, are r = 0.1, r = 0.3, and r = 0.5. Power 250 

analysis for correlations can be performed by converted r to Cohen’s d using: 251 

 
𝑑 =  

2𝑟

√1 − 𝑟2
  

(9) 

after which Formula 5 can be used. This approach is used by for example G*Power (Faul, 252 

Erdfelder, Lang, & Buchner, 2007). 253 

Equivalence test for Meta-Analyses 254 

As noted earlier, rejecting small effects in an equivalence test requires large samples. If 255 

researchers want to perform an equivalence test with narrow equivalence bounds (e.g., ΔL = -0.1 and 256 

ΔU = 0.1), in most cases only a meta-analysis will have sufficient statistical power. Rogers and 257 

colleagues (1993) explain the straightforward approach to performing equivalence tests for meta-258 

analyses:  259 

 
𝑍𝐿 =  

Δ +  Δ𝐿

𝑆𝐸
, 𝑍𝑈 =  

Δ +  Δ𝑈

𝑆𝐸
  

(10) 

Where Δ is the meta-analytic effect size (Cohen’s d or Hedges’ g), and SE is the meta-260 

analytic standard error (or √𝑣𝑎𝑟). These values can be calculated with meta-analysis software such as 261 

metafor (Viechtbauer, 2010). The two one-sided tests are rejected if ZL ≤ -Zα, and ZU ≤ Zα. 262 

Alternatively, the 90% confidence interval can be reported. If the 90% confidence interval falls within 263 

the equivalence bounds, the observed meta-analytic effect is statistically equivalent. 264 

Setting Equivalence Bounds 265 

In psychology, most theories do not state which effects are too small to be interpreted as 266 

support the proposed underlying mechanism. Instead, feasibility considerations are often the strongest 267 
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determinant of the effect sizes a researcher can reliably examine. In daily practice, researchers have a 268 

maximum sample size they are willing to collect in a single study (e.g., 100 participants in each 269 

between subject condition). Given a desired level of statistical power (e.g., 80%) and a specific α 270 

(e.g., 0.05) this implies a smallest effect size they find worthwhile to examine, or a smallest effect size 271 

of interest (SESOI; Lakens, 2014) they can reliably examine. With 100 participants in each condition, 272 

80% desired power, and an α of 0.05, the SESOI in a null-effect significance test is Δ = 0.389, and for 273 

an equivalence test, assuming a true effect size of 0, 80% power is achieved when ΔL = -0.414 and ΔU 274 

= 0.414. As such, without practical boundaries or theoretical boundaries that indicate which effect size 275 

is meaningful, the maximum sample size you are willing to collect implicitly determines your smallest 276 

effect size of interest. Therefore, setting equivalence boundaries to your SESOI in an equivalence test 277 

allows you to reject effect sizes larger than you find worthwhile to examine, given available 278 

resources. 279 

This recommendation differs from practices in drug development, where equivalence bounds 280 

are often set by regulations (e.g., differences up to 20% are not considered to be clinically relevant). 281 

In psychology, such general regulations about what constitutes a meaningful effect seem unlikely to 282 

emerge, and perhaps even undesirable. Using equivalence bounds based on effect sizes a researcher 283 

finds worthwhile to examine do not allow psychologists to conclude an effect is too small to be 284 

meaningless for anyone. When other researchers believe a smaller effect size is plausible and 285 

theoretically interesting, they can design a study with a larger sample size to examine the effect. Until 286 

theories in psychology predict effects of a specific size, setting equivalence bounds to the effect sizes 287 

one finds worthwhile to examine will at least make it explicit which effect sizes a researcher predicts, 288 

and allows researchers to statistically falsify their predictions. In randomized controlled trials it is 289 

expected that equivalence bounds are pre-specified (e.g., see CONSORT guidelines, Piaggio et al., 290 

2006), and this should also be considered best-practice in psychology.  291 

Simonsohn (2015) proposes to test for inferiority for replication studies (an equivalence test 292 

where the lower bound is set to infinity). He suggests to set the upper equivalence bound in a 293 

replication study to the effect size that would have given an original study 33% power. For example, 294 

an original study with 60 participants divided equally across two independent groups has 33% power 295 
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to detect an effect of d = 0.4, so ΔU is set to d = 0.4. This approach limits the sample size required to 296 

test for equivalence to 2.5 times the sample size of the original study. The goal is not to show the 297 

effect is too small to be feasible to study, but too small to have been reliably detected by the original 298 

experiment, thus casting doubt on the original observation. 299 

If feasibility constraints are practically absent (e.g., in online studies), another starting point to 300 

set equivalence bounds is by setting bounds based on benchmarks for small, medium, and large 301 

effects. Although using these benchmarks to interpret effect sizes is typically recommended as a last 302 

resort (e.g., Lakens, 2013), their use in setting equivalence bounds seems warranted by the lack of 303 

other clear-cut recommendations. By far the best solution would be for researchers to specify their 304 

smallest effect size of interest when they publish an original result, or describe a theoretical idea 305 

(Morey & Lakens, under review). The use of equivalence testing will no doubt lead to a discussion 306 

about which effect sizes are too small to be worthwhile to examine in specific research lines in 307 

psychology, which in itself is progress. 308 

Discussion 309 

Equivalence tests are a simple adaptation of traditional significance tests that allow 310 

researchers to design studies that reject effects larger than pre-specified equivalence bounds. It allows 311 

researchers to reject effects large enough to be considered worthwhile. Adopting equivalence tests 312 

will prevent the common misinterpretations of non-significant p-values as the absence of an effect, 313 

and nudge researchers towards specifying which effects they find worthwhile. By providing a simple 314 

spreadsheet and R package to perform power calculations and equivalence tests for common statistical 315 

tests in psychology, researchers should be able to easily improve their research practices. 316 

Rejecting effects more extreme than the equivalence bounds implies that we can conclude 317 

equivalence for a specific operationalization of a hypothesis. It is possible that a meaningful effect 318 

would be observed with a different manipulation or measure. Confounds can underlie observed 319 

equivalent effects. An additional non-statistical challenge in interpreting equivalence concerns the 320 

issue of whether an experiment was performed competently (Senn, 1993). Complete transparency 321 

(sharing all materials) is a partial solution since it allows peers to evaluate whether the experiment 322 

was well-designed (Morey et al., 2016), but this issue is not easily resolved when the actions of an 323 
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experimenter might influence the data (e.g., when a study relies on a confederate). In such 324 

experiments, even blinding the experimenter to conditions is no solution since an experimenter can 325 

interfere with the data quality of all conditions. This is an inherent asymmetry between demonstrating 326 

an effect, and demonstrating the absence of a worthwhile effect. The only solution for anyone 327 

skeptical about studies demonstrating equivalence is to perform an independent replication. 328 

Equivalence testing is based on a Neyman-Pearson hypothesis testing approach that allows 329 

researchers to control error rates in the long run, and design studies based on a desired level of 330 

statistical power. Error rates in equivalence tests are controlled at the alpha level when the true effect 331 

equals the equivalence bound. When the true effect is more extreme than the equivalence bounds, 332 

error rates are smaller than the alpha level. It is important to take statistical power into account when 333 

determining the equivalence bounds, because in small samples (where confidence intervals are wide) 334 

a study might have no statistical power (i.e., the confidence interval will always be so wide that it is 335 

necessarily wider than the equivalence bounds). 336 

There are alternative approaches to the TOST procedure. Updated versions of equivalence 337 

tests exist, but their added complexity does not seem to be justified by the small gain in power (for a 338 

discussion, see Meyners, 2012). There are also alternative approaches to providing statistical support 339 

for a small or null effect, such as estimation (calculating effect sizes and confidence intervals), 340 

specifying a region of practical equivalence (Kruschke, 2010), or calculating Bayes factors (Dienes, 341 

2014; Rouder, Speckman, Sun, Morey, & Iverson, 2009). Researchers should report effect size 342 

estimates in addition to hypothesis tests, and since Bayesian and Frequentist tests answer 343 

complementary questions, these tests can be reported side by side. 344 

Other fields are able to use raw measures due to the widespread use of identical 345 

measurements (e.g., the number of deaths, the amount of money spent), but in some subfields in 346 

psychology the variability in the measures that are collected require standardized effect sizes to make 347 

comparisons across studies (Cumming & Fidler, 2009). A consideration of using standardized effect 348 

sizes as equivalence bounds is that in two studies with the same mean difference and confidence 349 

intervals in raw scale units (e.g., a difference of 0.2 on a 7-point scale with 90% CI[-0.13;0.17]) the 350 

same standardized equivalence bounds can lead to different significance levels in a equivalence test. 351 
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The reason for this is that the pooled standard deviation can differ across the studies, and as a 352 

consequence, the same equivalence bounds in standardized scores imply different equivalence bounds 353 

in raw scores. If this is undesirable, researchers should specify equivalence bounds in raw scores 354 

instead. 355 

Ideally, psychologists could specify equivalence bounds in raw mean differences based on 356 

theoretical predictions or cost-benefit analyses, instead of setting equivalence bounds based on 357 

standardized benchmarks. My hope is that as equivalence tests become more common in psychology, 358 

researchers will start to discuss which effect sizes are theoretically expected while setting equivalence 359 

bounds. When theories do not specify which effect sizes are too small to be meaningless, theories 360 

can’t be falsified. Whenever a study yields no significant effect, one can always argue that there is a 361 

true effect that is smaller than the study could reliably detect (Morey & Lakens, under review). 362 

Maxwell, Lau, and Howard (2015) suggest that replication studies demonstrate the absence of an 363 

effect by using equivalence bounds of ΔL = -0.1 and ΔU = 0.1, or even ΔL = -0.05 and ΔU = 0.05. I 364 

believe this creates an imbalance where we condone original studies that fail to make specific 365 

predictions, while replication studies are expected to test extremely specific predictions that can only 366 

be confirmed by collecting huge numbers of observations. Even though the substantial effort required 367 

to collect such large sample sizes can be shared by performing prospective meta-analyses based on 368 

large scale collaborations (Simons, Holcombe, & Spellman, 2014), we should expect theories 369 

proposed in original studies specify a smallest effect size of interest. 370 

Extending your statistical toolkit with equivalence tests might very well be the easiest way for 371 

psychologists to improve their statistical and theoretical inferences. The TOST procedure provides a 372 

straightforward approach to reject effect sizes that one considers large enough to be worthwhile to 373 

examine. 374 

  375 
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Footnotes 376 

1 As Wellek (2010, p. 30) notes, for all practical purposes (such as the use of the 377 

accompanying spreadsheet), one can simply specify a very large value for the infinite equivalence 378 

bound. 379 

2 A 90% confidence interval (1-2α) is used instead of a 95% confidence interval (1-α) because 380 

two one-sided tests (each with an alpha of 5%) are performed. 381 

3 I’d like to thank Jake Westfall for this suggestion.  382 

  383 



 EQUIVALENCE TESTS: A PRACTICAL PRIMER 18 

References 384 

Anderson, S. F., & Maxwell, S. E. (2016). There’s more than one way to conduct a replication study: 385 

Beyond statistical significance. Psychological Methods, 21(1), 1–12. 386 

https://doi.org/10.1037/met0000051 387 

Berger, R. L., & Hsu, J. C. (1996). Bioequivalence Trials, Intersection-Union Tests and Equivalence 388 

Confidence Sets. Statistical Science, 11(4), 283–302. 389 

Chow, S.-C., Shao, J., & Wang, H. (2002). A note on sample size calculation for mean comparisons 390 

based on noncentral t-statistics. Journal of Biopharmaceutical Statistics, 12(4), 441–456. 391 

Cumming, G., & Fidler, F. (2009). Confidence Intervals: Better Answers to Better Questions. 392 

Zeitschrift Für Psychologie / Journal of Psychology, 217(1), 15–26. 393 

https://doi.org/10.1027/0044-3409.217.1.15 394 

Cumming, G., & Finch, S. (2001). A Primer on the Understanding, Use, and Calculation of 395 

Confidence Intervals that are Based on Central and Noncentral Distributions. Educational and 396 

Psychological Measurement, 61(4), 532–574. https://doi.org/10.1177/0013164401614002 397 

Delacre, M., Lakens, D., & Leys, C. (2016). Why psychologists should by default use Welch’s t-test 398 

instead of Student’s t-test with unequal group sizes. Under Review. 399 

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Quantitative Psychology 400 

and Measurement, 5, 781. https://doi.org/10.3389/fpsyg.2014.00781 401 

Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical 402 

Psychology. https://doi.org/10.1016/j.jmp.2015.10.003 403 

Eskine, K. J. (2013). Wholesome Foods and Wholesome Morals? Organic Foods Reduce Prosocial 404 

Behavior and Harshen Moral Judgments. Social Psychological and Personality Science, 4(2), 405 

251–254. https://doi.org/10.1177/1948550612447114 406 

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power 407 

analysis program for the social, behavioral, and biomedical sciences. Behavior Research 408 

Methods, 39(2), 175–191. 409 

Finch, S., Cumming, G., & Thomason, N. (2001). Colloquium on Effect Sizes: the Roles of Editors, 410 

Textbook Authors, and the Publication Manual Reporting of Statistical Inference in the 411 



 EQUIVALENCE TESTS: A PRACTICAL PRIMER 19 

Journal of Applied Psychology: Little Evidence of Reform. Educational and Psychological 412 

Measurement, 61(2), 181–210. https://doi.org/10.1177/0013164401612001 413 

Gigerenzer, G. (1998). Surrogates for theories. Theory and Psychology, 8(2), 195–204. 414 

Goertzen, J. R., & Cribbie, R. A. (2010). Detecting a lack of association: An equivalence testing 415 

approach. British Journal of Mathematical and Statistical Psychology, 63(3), 527–537. 416 

https://doi.org/10.1348/000711009X475853 417 

Hauck, D. W. W., & Anderson, S. (1984). A new statistical procedure for testing equivalence in two-418 

group comparative bioavailability trials. Journal of Pharmacokinetics and Biopharmaceutics, 419 

12(1), 83–91. https://doi.org/10.1007/BF01063612 420 

Julious, S. A. (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine, 23(12), 421 

1921–1986. https://doi.org/10.1002/sim.1783 422 

Kruschke, J. (2010). Doing Bayesian data analysis: A tutorial introduction with R. Academic Press. 423 

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical 424 

primer for t-tests and ANOVAs. Frontiers in Psychology, 4. 425 

https://doi.org/10.3389/fpsyg.2013.00863 426 

Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses: Sequential 427 

analyses. European Journal of Social Psychology, 44(7), 701–710. 428 

https://doi.org/10.1002/ejsp.2023 429 

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample Size Planning for Statistical Power and 430 

Accuracy in Parameter Estimation. Annual Review of Psychology, 59(1), 537–563. 431 

https://doi.org/10.1146/annurev.psych.59.103006.093735 432 

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication 433 

crisis? What does “failure to replicate” really mean? American Psychologist, 70(6), 487–498. 434 

https://doi.org/10.1037/a0039400 435 

Meyners, M. (2012). Equivalence tests – A review. Food Quality and Preference, 26(2), 231–245. 436 

https://doi.org/10.1016/j.foodqual.2012.05.003 437 

Moery, E., & Calin-Jageman, R. J. (2016). Direct and Conceptual Replications of Eskine (2013): 438 

Organic Food Exposure Has Little to No Effect on Moral Judgments and Prosocial Behavior. 439 



 EQUIVALENCE TESTS: A PRACTICAL PRIMER 20 

Social Psychological and Personality Science, 7(4), 312–319. 440 

https://doi.org/10.1177/1948550616639649 441 

Morey, R. D., Chambers, C. D., Etchells, P. J., Harris, C. R., Hoekstra, R., Lakens, D., … Zwaan, R. 442 

A. (2016). The Peer Reviewers’ Openness Initiative: incentivizing open research practices 443 

through peer review. Royal Society Open Science, 3(1), 150547. 444 

Morey, R. D., & Lakens, D. (under review). Why most of psychology is statistically unfalsifiable. 445 

Piaggio, G., Elbourne, D. R., Altman, D. G., Pocock, S. J., Evans, S. J., Group, C., & others. (2006). 446 

Reporting of noninferiority and equivalence randomized trials: an extension of the 447 

CONSORT statement. Jama, 295(10), 1152–1160. 448 

Quertemont, E. (2011). How to Statistically Show the Absence of an Effect. Psychologica Belgica, 449 

51(2), 109. https://doi.org/10.5334/pb-51-2-109 450 

Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence 451 

between two experimental groups. Psychological Bulletin, 113(3), 553. 452 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for 453 

accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. 454 

https://doi.org/10.3758/PBR.16.2.225 455 

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and 456 

the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690. 457 

https://doi.org/10.1093/beheco/ark016 458 

Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach 459 

for assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and 460 

Biopharmaceutics, 15(6), 657–680. 461 

Seaman, M. A., & Serlin, R. C. (1998). Equivalence confidence intervals for two-group comparisons 462 

of means. Psychological Methods, 3(4), 403–411. 463 

https://doi.org/http://dx.doi.org.dianus.libr.tue.nl/10.1037/1082-989X.3.4.403 464 

Senn, S. (2007). Statistical issues in drug development (2nd ed). Chichester, England ; Hoboken, NJ: 465 

John Wiley & Sons. 466 



 EQUIVALENCE TESTS: A PRACTICAL PRIMER 21 

Simons, D. J., Holcombe, A. O., & Spellman, B. A. (2014). An introduction to registered replication 467 

reports at perspectives on psychological science. Perspectives on Psychological Science, 9(5), 468 

552–555. 469 

Simonsohn, U. (2015). Small Telescopes Detectability and the Evaluation of Replication Results. 470 

Psychological Science, 26(5), 559–569. https://doi.org/10.1177/0956797614567341 471 

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. J Stat Softw, 472 

36(3), 1–48. 473 

Weber, R., & Popova, L. (2012). Testing Equivalence in Communication Research: Theory and 474 

Application. Communication Methods and Measures, 6(3), 190–213. 475 

https://doi.org/10.1080/19312458.2012.703834 476 

Wellek, S. (2010). Testing statistical hypotheses of equivalence and noninferiority (2nd ed). Boca 477 

Raton: CRC Press. 478 

 479 


