
Bayesian Versus Orthodox Statistics:
Which Side Are You On?

Zoltan Dienes
School of Psychology, University of Sussex, Brighton, United Kingdom

Abstract
Researchers are often confused about what can be inferred from significance tests. One problem occurs when people apply
Bayesian intuitions to significance testing—two approaches that must be firmly separated. This article presents some common
situations in which the approaches come to different conclusions; you can see where your intuitions initially lie. The situations
include multiple testing, deciding when to stop running participants, and when a theory was thought of relative to finding out
results. The interpretation of nonsignificant results has also been persistently problematic in a way that Bayesian inference can
clarify. The Bayesian and orthodox approaches are placed in the context of different notions of rationality, and I accuse myself
and others as having been irrational in the way we have been using statistics on a key notion of rationality. The reader is
shown how to apply Bayesian inference in practice, using free online software, to allow more coherent inferences from data.
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Psychology and other disciplines have benefited enormously

from having a rigorous procedure for extracting inferences

from data. The question this article raises is whether we could

be doing it better. Two main approaches are contrasted: ortho-

dox statistics versus the Bayesian approach. Around the 1940s,

the heated debate between the two camps was momentarily

won in terms of what users of statistics did: Users followed

the approach systematized by Jerzy Neyman and Egon Pear-

son (at least this approach defined norms; in practice,

researchers often followed the somewhat different advice of

Ronald Fisher; see e.g., Gigerenzer, 2004). But it was not

that the intellectual debate was decisively won. It was more

a practical matter of which approach had the most well

worked-out applications at the time and which approach was

conceptually easier for the researcher to apply. But now the prac-

tical problems have been largely solved; there is little to stop

researchers from using the Bayesian approach in almost all

circumstances. Thus the intellectual debate can be opened up

again, and indeed it has (e.g., Baguley, in press; Hoijtink, Klugkist,

& Boelen, 2008; Howard, Maxwell, & Fleming, 2000;

Johansson, in press; Kruschke, 2010a, 2010b, 2010c, 2011, this

issue; Rouder, Morey, Speckman, & Pratte, 2007; Rouder,

Speckman, Sun, Morey, & Iverson, 2009; Taper & Lele, 2004;

Wetzels et al., 2011, this issue). It is time for researchers to consider

foundational issues in inference. And it is time to consider whether

it is really advantageous that it takes less thought to calculate

canned p values or whether it has led us astray in interpreting data

(e.g., Harlow, Mulaik, & Steiger, 1997; Meehl, 1967; Royall, 1997;

Ziliak & McCloskey, 2008), despite the benefits it has also pro-

vided. Indeed, I argue we would be most rational, under one intui-

tively compelling notion of rationality, to be Bayesians.

Test Your Intuitions

To see where your sympathies lie, at least initially, consider the

three scenarios in Box 1, where the approaches give different

responses. You might reject all the responses for a given sce-

nario or feel attracted to more than one. Real research questions

do not have pat answers, but see if, nonetheless, you have clear

preferences. Almost all responses are consistent either with

some statistical approach or with what a large section of

researchers do in practice, so do not worry about picking out

the one ‘‘right’’ response (though, given certain assumptions,

I will argue that there is a right response).

Throughout the rest of this article, I will consider how to

think about these scenarios. First, I review the basics of ortho-

dox hypothesis testing to show how the starting assumptions of
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orthodox statistics differ from Bayesian inference. Next, I show

that Bayesian inference follows from the axioms of probability,

which motivate the ‘‘likelihood principle’’ of inference. I

explain how the orthodox answers to the scenarios in the test

violate the likelihood principle and, hence, the axioms of prob-

ability. Then the contrast between Bayesian and orthodox

approaches to statistics is framed in terms of different notions

of rationality. Because orthodox statistics violate the likelihood

principle, orthodox inference is irrational on a key intuitive

notion of rationality. Finally, I explain how to conduct a Baye-

sian analysis, using free simple online software, to enable the

most rational inferences from the data.

The Contrast: Orthodox Versus Bayesian
Statistics

The orthodox logic of statistics, as developed by Jerzy Neyman

and Egon Pearson in the 1930s, starts from the assumption that

probabilities are long-run relative frequencies (Dienes, 2008).

A long-run relative frequency requires an indefinitely large

series of events that constitutes the collective (von Mises,

1957); the probability of some property (q) occurring is then

the proportion of events in the collective with property q. For

example the probability of having black hair is the proportion

of people in a well-defined collective (e.g., people living in

England) who have black hair. The probability applies to the

whole collective, not to any one person. Any one person either

has black hair or not. Further, that same person may belong to

two different collectives that have different probabilities: For

example, the probability of having black hair is different for

Chinese people in England than for all people in England, even

though a large number of people will belong to both

collectives.

Long-run relative frequencies do not apply to the truth of

individual theories because theories are not collectives—the-

ories are just true or false. Thus, when using this approach to

probability, the null hypothesis of no population difference

between two particular conditions cannot be assigned a

Box 1. Testing Your Intuitions in Three Research Scenarios

1. Stopping rule

You have run the 20 subjects you planned and have obtained a p value of .08. Despite predicting a difference, you

know this won’t be convincing to any editor and run 20 more subjects. SPSS now gives a p of .01. Would you:

a) Submit the study with all 40 participants and report an overall p of .01?

b) Regard the study as nonsignificant at the 5% level and stop pursuing the effect in question, as each individual

20-subject study had a p of .08?

c) Use a method of evaluating evidence that is not sensitive to your intentions concerning when you planned to stop

collecting subjects, and base conclusions on all the data?

2. Planned versus post hoc

After collecting data in a three-way design, you find an unexpected partial two-way interaction, specifically you

obtain a two-way interaction (p ¼ .03) for just the males and not the females. After talking to some colleagues and read-

ing the literature, you realize there is a neat way of accounting for these results: Certain theories can be used to predict

the interaction for the males but they say nothing about females. Would you:

a) Write up the introduction based on the theories leading to a planned contrast for the males, which is then significant?

b) Treat the partial two-way as nonsignificant, as the three-way interaction was not significant, and the partial inter-

action won’t survive corrections for post hoc testing?

c) Determine how strong the evidence of the partial two-way interaction is for the theory you put together to explain it,

with no regard to whether you happen to think of the theory before seeing the data or afterwards, as all sorts of arbitrary

factors could influence when you thought of a theory?

3. Multiple testing

You explore five possible ways of inducing subliminal perception as measured with priming. Each method interferes

with vision in a different way. The test for each method has a power of 80% for a 5% significance level to detect the size of

priming produced by conscious perception. Of these methods, the results for four are nonsignificant and one, Continuous

Flash Suppression, is significant, p ¼ .03, with a priming effect numerically similar in size to that found with conscious

perception. Would you:

a) Report the test as p ¼ .03 and conclude there is subliminal perception for this method?

b) Note that all tests are nonsignificant when a Bonferroni-corrected significance value of .05/5 is used, and conclude

that subliminal perception does not exist by any of these methods?

c) Regard the strength of evidence provided by these data for subliminal perception produced by Continuous Flash

Suppression to be the same regardless of whether or not four other rather different methods were tested?
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probability—it is either true or false. But given both a theory

and a decision procedure, one can determine a long-run relative

frequency with which certain data might be obtained, which we

can symbolize as P(data | theory and decision procedure). For

example, given a null hypothesis and a procedure that includes

rejection if the t value exceeds 2, we can work out the

frequency with which we would reject the null hypothesis.

The logic of Neyman Pearson (orthodox) statistics is to adopt

decision procedures with known long-term error rates (of false

positives and false negatives) and then control those errors at

acceptable levels. The error rate for false positives is called

alpha, the significance level (typically.05), and the error rate for

false negatives is called beta, where beta is 1 – power. Thus, set-

ting significance and power controls long-run error rates. An

error rate can be calculated from the tail area of test statistics

(e.g., tail area of t distributions) adjusted for factors that affect

long-run error rates, like how many other tests are being con-

ducted. These error rates apply to decision procedures, not to

individual experiments. An individual experiment is a one-

time event, so it does not constitute a long-run set of events, but

a decision procedure can in principle be considered to apply over

an indefinite long-run number of experiments.

The probabilities of data given theory and
theory given data

The probability of a theory being true given data can be sym-

bolized as P(theory | data), and that is what many of us would

like to know. This is the inverse of P(data | theory), which is

what orthodox statistics tells us. One might think that if ortho-

dox statistics indicates P(data | theory) it thereby directly indi-

cates P(theory | data). But one cannot infer one conditional

probability just by knowing its inverse. For example, the prob-

ability of being dead given that a shark has bitten one’s head

clean off, P(dead | head bitten clean off by shark), is 1. But the

probability that a shark has bitten one’s head clean off given

that one is dead, P(head bitten off by shark | dead), is very close

to zero. Most people die of other causes.

What applies to sharks biting heads off also applies to null

hypotheses. The significance value, a form of P(data | theory),

does not by itself indicate the probability of the null, P(theory |

data). The particular p value obtained also does not indicate the

probability of the null. Let us say you construct a coin heavily

weighted on one side so that it will land ‘‘heads’’ 60% of the

time. You give it to a friend for a betting game. He wishes to

test the null hypothesis that it is a fair coin at the 5% signifi-

cance level. He throws it five times, and gets three heads.

Assuming the null hypothesis that it will land heads 50% of the

time, the probability of three or more heads is 0.5. This is obvi-

ously not significant at the 5% level, even one tailed. He deci-

des to accept the null hypothesis (as the result is nonsignificant)

and also incorrectly concludes the null hypothesis has a 50%
probability of being true (based on the p value), or a 95% prob-

ability (based on the significance level used). But you know,

because of the way you constructed the coin, that the null is

false, and obtaining three heads out of five throws should not

change your mind about that (in fact, this nonsignificant result

should give you less confidence in the null hypothesis than in

your hypothesis that the coin produces heads 60% of the time).

You quite rationally do not assign the null hypothesis a prob-

ability of 50% (nor 95%). When people directly infer a prob-

ability of the null hypothesis from a p value or significance

level, they are violating the logic of Neyman Pearson statistics.

Such people want to know the probability of theories and

hypotheses. Neyman Pearson does not directly tell them that,

as the example illustrates.

Bayesian statistics starts from the premise that we can assign

degrees of plausibility to theories, and what we want our data to

do is to tell us how to adjust these plausibilities. (We will dis-

cuss below why these plausibilities turn out to be probabil-

ities—i.e., numbers obeying the axioms of probability.)

When we start from this assumption, there is no longer a need

for the notion of significance, p value, or power.1 Instead, we

simply determine the factor by which we should change the

probability of different theories given the data. And arguably

this is what people wanted to know in the first place. Table 1

illustrates some differences between hypothesis testing by

comparing a t test with a Bayesian statistic called the Bayes

factor, which we will describe in detail later. (Note that I will

not discuss confidence intervals and credibility intervals, the

Bayesian equivalent to a confidence interval, in this article; see

Dienes, 2008, and Kruschke 2010b, 2011, for detailed discus-

sion and calculations.)

The likelihood

In the Bayesian approach, probability applies to the truth of

theories. Thus, we can answer questions about p(H), the prob-

ability of a hypothesis being true (our prior probability), and

also p(H | D), the probability of a hypothesis given data (our

posterior probability)—neither of which we can do when using

the orthodox approach. The probability of obtaining the exact

data given the hypothesis is the likelihood. From the axioms

of probability, it follows directly that:2

Posterior is given by likelihood times prior.

From this theorem (Bayes’ theorem) comes the likelihood prin-

ciple: All information relevant to inference contained in data is

provided by the likelihood (e.g., Birnbaum, 1962). When we

are determining how given data changes the relative probability

of our different theories, it is only the likelihood that connects

the prior to the posterior.

The likelihood is the probability of obtaining the exact data

obtained given a hypothesis, P(D | H). This is different from a

p value, which is the probability of obtaining the same or more

extreme data given both a hypothesis and a decision procedure.

Thus, a p value for a t test is a tail area of the t distribution

(adjusted according to the decision procedure); the correspond-

ing likelihood is the height of the distribution (e.g., t distribu-

tion) at the point representing the data—not an area, and

certainly not an area adjusted for the decision procedure. In
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orthodox statistics, adjustments must be made to the tail area

because they accurately reflect the factors that affect long term

error rates of a decision procedure. Thus, we can represent a p

value as P(obtained data or data more extreme | null hypothesis

and decision procedure); the likelihood for the null is

P(obtained data | null hypothesis).

The likelihood principle may seem a truism; it seems to just

follow from the axioms of probability. But in orthodox statis-

tics, p values are changed according to the decision procedure:

under what conditions one would stop collecting data, whether

or not the test is post hoc, or how many other tests one con-

ducted. None of these factors influence the likelihood. Thus,

orthodox statistics violates the likelihood principle. I will con-

sider each of these cases because they have been used to argue

Bayesian inference must be wrong, given that we have been

trained as researchers to regard these violations of the likeli-

hood principle to be a normative part of orthodox statistical

inference. But these violations of the likelihood principle also

lead to bizarre paradoxes. I argue that when the full context

of a problem is taken into account, the arguments against Bayes

based on these points fail.

The Bayes factor

For a point of reference, a type of Bayesian analysis, the Bayes

factor, is introduced, which will allow us to consider the con-

trast between orthodox and Bayes in detail.

The Bayes factor pits one theory against another—for exam-

ple, Theory1 against Theory2. Theory1 could be your pet the-

ory put to test in an experiment; Theory2 could be the null

hypothesis or some other sort of default position. If your per-

sonal probability of Theory1 being true before the experiment

is P(Theory1) and that for Theory2 is P(Theory2), then your

prior odds in favor of Theory1 over Theory2 is P(Theory1)/

P(Theory2). These prior probabilities and prior odds can be

entirely personal or subjective; there is no reason why people

should agree about these before data are collected if they are

not part of the publically presented inferential procedure. We

will present a technique here in which these priors do not figure

in the inferential procedure (see also Wetzels et al., 2011). If

the priors form part of the inferential procedure, they must be

fairly produced and subjected to the tribunal of peer judgment

(e.g., Kruschke, 2011).

Once data are collected we can calculate the likelihood for

each theory. These likelihoods are things we want researchers

to agree on; thus, any probabilities that contribute to them

should be plausibly or simply determined by the specification

of the theories. The Bayes factor (B) is the ratio of the likeli-

hoods. Then, from the axioms of probability3

Posterior odds ¼ B � prior odds.

If B is greater than 1, then the data supported your experimental

hypothesis over the null. If B is less than 1, then the data sup-

ported the null hypothesis over the experimental one. If B is

Table 1. Some Differences Between a t Test and a Bayes Factor

Question Orthodox Bayes

What are you testing? Hypothesis vs. null hypothesis when power and
confidence intervals are used appropriately;
otherwise just null hypothesis.

Hypothesis vs. a contrasting hypothesis (could be null).

What summary of the
data is needed to
conduct the test?

M and SE. M and SE.

What other informa-
tion is needed to
conduct the test?

None, the t value is just M / SE. People should determine
power, and this would also require specifying the size of
effect predicted by the theory, though specifying
predicted effect size is not needed to get a t value.

A specification of the plausibility of the different effect
sizes allowed by the theory.

What other criteria
must be set to make
a decision?

The significance level. To know the sensitivity of the test, a
power should be decided, though this is not typically
done.

What size Bayes factor represents strong evidence.

How are predicted
effect sizes specified?

If they are specified for a t test, a single finite minimal
expected value must be given for power to be
calculated (or confidence intervals used) to assess a null
result.

As a probability distribution. A single value can be
specified or a range. A range can allow indefinitely small
effects, which would render Neyman Pearson power
calculations impossible.

What are the range of
results?

A t value can range from 0 through 1 (consistent either
with the null hypothesis or with the test being
insensitive), to very large numbers, to infinity
(inconsistent with the null hypothesis).

A Bayes factor varies from 0 (overwhelming support for
the contrasting hypothesis) through 1 (test insensitive:
equal support for both hypotheses) to infinity
(overwhelming support for hypothesis).

What can you
conclude?

Can assert acceptance or rejection of null hypothesis, but
strangely such assertions have no implications for how
confident you should be in them in any one case.
(The null hypothesis can only be accepted when power
or confidence intervals have been used appropriately.)

You can adjust your confidence in your hypothesis relative
to the contrasting one by the amount specified by the
Bayes factor.
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about 1, then the experiment was not sensitive. Jeffreys (1961)

suggests Bayes factors above 3 or below one third are

‘‘substantial,’’ though the evidence is continuous and there are

no thresholds as such in Bayesian theory. Jeffreys suggests that

for ‘‘moderate numbers of observations’’ (p. 435) in typical

situations, his Bayesian conventions and the convention of

5% significance will often agree, meaning that his conventions

provide appropriate calibration between the Bayesian and

Neyman Pearson approaches, as far as such calibration can

exist. Agreement between Bayes and Neyman Pearson varies

according to conditions: Wetzels et al. (2011) show empirically

that a special sort of Bayes factor, the Rouder–Bayes factor,

will often regard evidence as slim when p < .05. But as we will

see later in this article, when the specific theories of authors

are taken into account while calculating the Bayes factor,

Jeffreys’s conventions match the standards of evidence that

psychologists are used to accepting (see the Appendix; see also

Kruschke, 2011).

Importantly, B automatically gives a notion of sensitivity; it

directly distinguishes data supporting the null from data unin-

formative about whether the null or your theory was supported.

Table 1 shows some differences and similarities between

t tests and Bayes factors. Note especially how the tests differ

in terms of the range of results they produce. For both p values

associated with a t test and for B, if the null is false, as number

of subjects increases, then test scores are driven in one direc-

tion: p values are expected to become smaller, and both t and

B values are expected to become larger. But as we will see

below, when the null hypothesis is true, p values are not driven

in any direction—only B is, and it is driven to zero. This dis-

tinction is crucial.

I will now consider the reasons for preferring Bayes over

Neyman Pearson. I will initially examine the reasons based

on the ways in which Neyman Pearson depart from the likeli-

hood principle; then, I will consider how both Neymen Pearson

and Bayes use predicted effect sizes. Neyman Pearson statistics

are sensitive to factors inferentially irrelevant according to the

likelihood principle: the stopping rule, whether a prediction

was planned or post hoc, and how many other tests were con-

ducted. ‘‘But surely’’ you might think, ‘‘inference should be

sensitive to these factors?’’ These are the factors considered

in the quiz; in answering the quiz, what were your intuitions?

Did they really match what you have been taught?

Your Answers to the Quiz and Problems
With the Neyman Pearson Approach

The problems with the Neyman Pearson approach, in terms of

how it violates the likelihood principle, can be highlighted by

considering the situations we started with (Box 1) and what

your intuitions were in responding to those situations. By con-

sidering concrete situations, you may initially favor Neyman

Pearson for the cases we have been trained to regard as impor-

tant, namely post hoc versus planned comparisons and multiple

testing. Let us see if we can dismantle those intuitions.

1. Stopping rule

For Question 1, regarding ‘‘topping up’’ subject numbers,

I suspect a majority of researchers have at some time chosen

(a) as their answer in similar cases: They have reported the

topped-up data set without taking into account that the initial

planned number of subjects was lower than the topped-up

number. This is also the answer one might pick with a meta-

analytic mind set, but use of meta-analysis here is complicated

by the fact the stopping rule was conditional upon obtaining a

significant finding. Answer (c) spells out the intuition motivat-

ing the choice of (a), but only Bayes provides the tools for

implementing it. The Neyman Pearson tools are invalid.

On the Neyman Pearson approach one must specify the

stopping rule in advance (i.e., the conditions under which one

would stop collecting data). Once those conditions are met,

there is to be no more data collection. Typically, this means one

should use a power calculation to plan in advance how many

subjects to run. Running subjects until a significant result is

obtained is forbidden, because this will always succeed, given

sufficient time, even if the null is true (e.g., Armitage, McPher-

son, & Rowe, 1969). Further, one cannot plan to run 30 sub-

jects, find a p of .06, and then run 10 more, and report the

p value of .04 for the full set of 40 subjects and declare it sig-

nificant at the 5% level. Five percent is an inaccurate reflection

of the error rate of the decision procedure because there were

two chances at declaring significance. Remember that prob-

abilities in the Neyman Pearson approach are long-run relative

frequencies and thus do not apply to the individual experiment.

A Type I error will be made 5% of the time at the first test; the

second test can only increase the percentage of Type I errors.

Each test must be conducted at a lower significance level for

the overall error rate to be kept at .05 (see Armitage, Berry,

& Mathews, 2002, pp. 615–623, for examples of corrections).

Similarly, if you would have stopped running subjects had it

been significant when you peeked at the results halfway

through data collection, the actual long term error rate is not

5%, even if you end up running the exact number of partici-

pants you had originally planned!
This puts one in an impossible moral dilemma if, having

tested once at the 5% level, an experiment yields a p of .06. One

cannot reject the null on that number of subjects, yet one cannot

accept it either (no matter what the official rules are, would you

accept the null for a p of .06 when you have predicted an

effect?). One cannot publish the data, yet one cannot in good

heart bin the data and waste public resources. That would be

immoral.

Researchers might justify ‘‘topping up’’ because in their

hearts they believe in the likelihood principle. Surely, the sub-

jective intentions concealed in the researcher’s mind are irrele-

vant when drawing inferences from data—what matters is just

what the obtained data are. But one cannot believe the likeli-

hood principle and follow Neyman Pearson techniques.

Long-term error rates using significance tests are affected by

counterfactuals (when would you have stopped, even if you

didn’t?), even if likelihoods are not.4
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The Bayes factor behaves differently from p values as more

data are run (regardless of stopping rule). For a p value, if the

null is true, any value in the interval 0 to 1 is equally likely no

matter how much data you collect (Rouder et al., 2009). For

this reason, sooner or later, you are guaranteed to get a signif-

icant result if you run subjects long enough and stop when you

get the p value you want (e.g., Wagenmakers, 2007). When the

null is true, as the number of subjects increases, the p value is

not driven to any particular value. In contrast, as the number of

subjects increases and the null is true, or closer to the truth than

your alternative, the Bayes factor is driven toward zero. Savage

(1962, pp. 72–73) considers a particular case in which one con-

tinues to sample until a Bayes factor of 10 is achieved, despite

the fact that the null is true, and shows ‘‘it is quite probable that

[one] will never succeed until the end of time.’’ That is, as in

Savage’s example, you could run an infinite number of subjects

and, on many such experiments (at least 9 out of 10), never

have B reach 10 (though, of course, false alarms will be

obtained on 1 out of 10 of such experiments—one can never

guarantee their elimination; see Dienes, 2008; Kruschke,

2011; Royall, 1997). Savage comments, ‘‘it is impossible to

be sure of sampling until the data justified an unjustifiable con-

clusion, just as surely as it is impossible to build a perpetual

motion machine. After all, whatever we may disagree about

we are surely agreed that Bayes theorem is true where it

applies.’’ Hence, you can run as many subjects as you like

when using Bayes and stop when you like, solving the moral

dilemma just mentioned. And if this sounds more sensible, it

is because it is literally more rational, as argued below.

2. Planned versus post hoc comparisons

For Question 2 (finding a good theory for predicting a set of

results already obtained), I suspect many people have decided

(a) in similar circumstances. They have treated the results as

predicted, because of the Bayesian intuitions in (c) and so used

the wrong tools for the right reasons. The introductions of many

papers appear to be written entirely in the light of the results.

We implicitly accept this as good practice, and indeed, we train

our students to do likewise for the sake of the poor reader of the

paper. But (b) is the correct answer based on the Neyman Pear-

son approach, and maybe your conscience told you so. But

should you be worrying about what is murky (which really

came first, data or hypothesis?) or, rather, about what really

matters—whether the predictions really follow from a substan-

tial theory in a clear simple way?

When using Neyman Pearson, it matters whether you for-

mulated your hypothesis before or after looking at the data

(post hoc vs. planned comparisons): Predictions made before

rather than after looking at the data are treated differently. In

Bayesian inference, the evidence for a theory is just as strong

regardless of its timing relative to the data. This is because the

likelihood is unaffected by the time the data were collected.

The likelihood principle contradicts not only Neyman Pear-

son on this point, but also the advice of Popper (1963) and

Lakatos (1978), who valued the novelty of predictions (though

Lakatos later gave up the importance of temporal novelty,

Lakatos & Feyerabend, 1999, pp. 109–112). Kerr (1998) also

criticized the practice of HARKing: hypothesising after the

results are known. Indeed, novel predictions are often impres-

sive as support for a theory. But this may be because the choice

of auxiliary hypotheses (i.e., those hypotheses implicitly or

explicitly used in connecting theory to specific predictions)

was fair and simple when making novel predictions. Post hoc

fitting can involve preference (for no good reason) for one aux-

iliary over many others of at least equal plausibility. Thus, a

careful consideration of the reason for postulating different

auxiliaries should render novelty irrelevant as a factor deter-

mining the evidential value of data. That is, the issue is not the

timing of the data per se, but the priori probability of the

hypotheses involved. And prior probability is something Bayes

is uniquely well equipped to deal with.

Consider an example that has been used as a counter argu-

ment to the likelihood principle. The example seems to show

that we should take into account whether a result was predicted

in advance or not, which is contrary to the likelihood principle.

Having considered the intuition that planned versus post hoc

comparisons are inferentially important, I will show why it is

false and the likelihood principle is in fact correct.

I have a pack of cards face down. I lift up the top card. It is a

six of hearts. Call the hypothesis that the pack is a standard

pack of playing cards Hs. Call the hypothesis that every card

in the pack is a six of hearts H6h. In a standard pack, the like-

lihood of drawing a six of hearts is 1 out of 52. So L(Hs) ¼ 1/

52. If the pack consists of 52 sixes of hearts, the likelihood of

drawing a six of hearts is 1. So L(H6h)¼ 1. So the Bayes factor

in favor of the pack consisting only of sixes of hearts versus

being a standard pack is 52. That is, the data greatly favor the

former hypothesis over the latter, and this conclusion seems

unreasonable at first. If you walked in a room and saw a pack

of cards face down, your initial prediction would be that they

are a standard pack of playing cards. The drawing of a single

six of hearts would not change your mind. So the hypothesis

that they are all sixes of hearts is purely post hoc, a mindless

fitting of the data. If Bayesian statistics support the post hoc

theory over the theory that it is a standard pack of cards, then

something is wrong with Bayes. If someone could predict in

advance that the pack was all sixes of hearts that would be one

thing; but the point is that they would not. By missing out on

the importance of what can be predicted in advance, the likeli-

hood principle appears to fail scientists.

Remember that the likelihood principle follows from the

axioms of probability. The axioms of probability are, by their

nature, almost self-evident assumptions. They will not lead to

wrong conclusions. Indeed, in this case, if we put the problem

in its full context, we see the Bayesian answers are very sensi-

ble (see Royall, 1997, p. 13, for the following argument). Con-

sider a situation in which, before we pick up the card, there are

52 hypotheses that the pack of cards is all of one sort of card: all

aces of hearts, all twos of hearts, and so on. Call the probability

that one or other of these hypotheses is true P. So the probabil-

ity of any one of them being true is P/52, assuming we hold
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them to all have equal probability. Once we have observed the

six of hearts, all these hypotheses go to zero, except for H6h.

The probability of that hypothesis goes to P. The probability

that the whole pack is all of one suit remains the same—it is

still P. The probability that it is a standard pack of cards

remains the same. The axioms of probability and their conse-

quence, Bayes theorem, give us just the right answer. There

is no need to introduce an extra concern with ability to predict

in advance; that concern is already implicitly covered in the

Bayesian approach. It is not the ability to predict in advance per

se that is important; that ability is just an (imperfect) indicator

of the prior probability of relevant hypotheses. When perform-

ing Bayesian inference, there is no need to adjust for the timing

of predictions per se. Indeed, it would be paradoxical to do so:

Adjusting conclusions according to when the hypothesis was

thought of would introduce irrelevancies into inference, lead-

ing to one conclusion on Tuesday and another on Wednesday

for the same data and hypotheses.

3. Multiple testing

For Question 3, concerning whether one would modify the con-

clusions for one test of subliminal perception based on the fact

that other methods were tested, practice may vary depending on

how the author feels about subliminal perception. After all,

there is no strict standard about what counts as a ‘‘family’’ for

the sake of multiple testing (Baguley, in press). There is a pull

between accepting that surely there is evidence for this method,

as stated in (c), and the realization that more tests means more

opportunities for inferential mistakes. But one should not con-

fuse strength of evidence with the probability of obtaining it

(Royall, 1997). Evidence is evidence, even if, as one increases

the circle of what tests are in the ‘‘family,’’ the probability that

some of the evidence will be misleading increases.

When using Neyman Pearson, one must correct for how

many tests are conducted in a family of tests. For example, if

100 correlations were run to test a theory and only four were

just significant at the 5% level, researchers would not try to

interpret those significant results. By contrast, when using

Bayes, it does not matter how many other statistical hypotheses

are investigated. All that matters is the data relevant to each

hypothesis under investigation.

Consider an example from Dienes (2008) to first pump your

intuitions along Neyman Pearson lines (to confirm the intuition

that one should correct for multiple testing); then, as above, I

will show how the axioms of probability do indeed give us the

sensible answer and, hopefully, your intuitions come to side

with Bayes (that one should not, after all, correct for multiple

testing in evaluating the strength of evidence of data for a

theory).

The example is about searching for the reincarnation of a

recently departed lama by a search committee set up by the

Tibetan Government-in-exile. The lama’s walking stick is put

together with a collection of 20 others. Piloting at a local school

shows each stick is picked equally often by children in general.

We have now set up a test with a known and acceptable

testwise Type I error probability, controlled to be less than

5% for each individual test. If a given candidate picks the stick,

p ¼ 1 / 21 < .05. Various omens narrow the search down to 21

candidate children. They are all tested and one of these passes

the test. Can the monks conclude that he is the reincarnation?

The Neyman Pearson aficionado says, ‘‘No. With 21 tests,

the family-wise error rate is 1 – (20/21)21 ¼ 0.64. This is unac-

ceptably high. Of course, if you test enough children, sooner or

later one of them will pass the test. That proves nothing. As

Bayes does not correct for multiple testing, surely the Bayesian

approach must be wrong.’’

The Bayesian responds, ‘‘Assume the reincarnation will

definitely choose the stick. If the 10th child chose the stick, the

Bayes factor, B, for the 10th child ¼ 21. Whatever your prior

odds that the 10th child was the reincarnation, they should be

increased by a factor of 21.’’

The Neyman Pearson aficionado feels his point has been

made. ‘‘You have manufactured evidence out of thin air! By

ignoring the issue of multiple testing, you have found strong

evidence in favor of a child being the reincarnation just because

you tested many children’’ (see e.g., Mayo, 1996, 2004, for the

need for correction for multiple testing as an argument against

Bayes). Hopefully you now strongly feel that one should cor-

rect for multiple testing.

The Bayesian patiently continues with an argument similar

to the one in the previous section, ‘‘The likelihood of any child

who did not choose the stick is 0. Call the prior probability that

one or other of these children was the reincarnation P. If prior

probabilities for each individual child are equal, the prior prob-

ability that any one is the reincarnation ¼ P / 21. After data, 20

of these go to zero. One goes to 21 � P / 21 ¼ P. The posterior

probabilities still sum to P. If you were convinced before col-

lecting the data that the null was false you can pick the reincar-

nation with confidence; conversely, if you were highly

confident in the null beforehand you should be every bit as con-

fident afterward. And this is just as it should be!’’
The Bayesian answer does not need to correct for multiple

testing because an answer does not need to be corrected if it

is already right. Once one takes into account the full context,

the axioms of probability lead to sensible answers, just as one

would expect. As I point out in Dienes (2008), a family of 20

tests in which one is significant at the .05 level typically leads

one by Bayesian reasoning to have more confidence in the

family-wise null hypothesis that ‘‘all nulls are true’’ while

decreasing one’s confidence in the one null that was signifi-

cant.5 And this fits one’s intuitions that if evidence went against

the null in only 4 out of 100 correlations, one would be more

likely to think the complete null is true, but still find oneself

more likely to reject the null for the four specific cases. If all

100 correlations bore on a theory that predicted nonzero corre-

lations in all cases, then one’s confidence in that theory would

typically decrease by a Bayesian analysis.

The moral is that in assessing the evidence for or against a

theory, one should take into account all the evidence relevant

to the theory and not cherry pick the cases that seem to support

it. Cherry picking is wrong on all statistical approaches. A large
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number of results showing evidence for the null against a

theory still count as against the theory, even if a few of the

effects the theory predicted are supported. And Bayes gives

one the apparatus for combining such evidence to come to an

overall conclusion—an apparatus missing in Neyman Pearson.

Thus, it is the Bayesian approach, rather than the Neyman

Pearson approach, that is most likely to demand that research-

ers draw appropriate conclusions from a body of relevant data

involving multiple testing. Bayes factors close to zero count as

evidence against the theory; in practice, using orthodox statis-

tics, nonsignificant values are either used as evidence against

the theory or not depending on whim.

Key differences between the approaches that follow from

the likelihood principle are shown in Table 2. To quickly sum-

marize the argument in Table 2, the orthodox approach is irra-

tional because different people with the same data and same

hypotheses could come to different conclusions.

The Rationality of the Bayesian Approach

What is it to be rational? One definition of rationality is having

sufficient justification for one’s beliefs, and another is that it is

a matter of having subjected one’s beliefs to critical scrutiny.

Popper and others inspired by him followed the latter definition

and termed it critical rationalism (e.g., Miller, 1994; Popper,

1963). In this view, there is never a sufficient justification for

a given belief because knowledge has no absolute foundation.

Propositions can be provisionally accepted as having survived

criticism, given other propositions those people in the debate

are conventionally and provisionally willing to accept. All

we can do is set up (provisional) conventions for accepting

or rejecting propositions. An intuition behind this approach is

that irrational beliefs are just those not subjected to sufficient

criticism (consider any of your colleagues’ irrational beliefs!).
Critical rationalism bears some striking similarities to the

orthodox approach to statistical inference—the Neyman Pear-

son approach. In this view, statistical inference cannot tell you

how confident to be in different hypotheses; it only gives con-

ventions for behavioral acceptance or rejection of different

hypotheses, which, given a relevant statistical model (which

can itself be subjected to testing), results in controlled, preset

long-term error rates. One cannot say how justified a particular

decision is or how probable a hypothesis is, and one cannot

give a number to how much data supports a given hypothesis

(how justified the hypothesis is, or how much its justification

has changed)—one can only say that the decision was made

by a decision procedure that in the long-run controls error

frequencies.

Now consider the first definition of rationality: having suf-

ficient justification for one’s beliefs. If we want to assign con-

tinuous degrees of justification (i.e., belief) to propositions,

what are the rules for logical and consistent reasoning? Cox

(1946; see Halpern, 1999; Jaynes, 2003, chapter 2; Sivia &

Skilling, 2006, for a full discussion) chose two minimal desi-

derata, namely that

1. If we specify degree of belief in P, we have implicitly

specified degree of belief in not-P,

2. If we specify degree of belief in P and also specify degree

of belief in Q given P, then we have implicitly specified

degree of belief in (P and Q).

Cox did not assume in advance what form this specification

was nor what the relationships were—just that the relationships

existed. Using deductive logic, Cox showed that degrees of

belief must follow the axioms of probability if we wish to

accept the above minimal constraints. Thus, if we want to

determine by how much we should revise continuous degrees

of belief, we need to make sure our system of inference obeys

the axioms of probability.6 If researchers want to think in terms

of the degree of support data provide for a hypothesis, they

should make sure their inferences obey the axioms of

probability.

One version of degrees of belief are subjective probabilities,

personal convictions in an opinion (e.g., Howson & Urbach,

2006). When probabilities of different propositions form part

of the inferential procedure we use in deriving conclusions

from data, then we need to make sure that the procedure is fair.

Thus, there has been an attempt to specify objective probabil-

ities that follow from the informational specification of a prob-

lem (e.g., Jaynes, 2003). In this way, the probabilities become

an objective part of the problem, with values that can be argued

about, given the explicit assumptions, and that do not depend

any further on personal idiosyncrasies. Thus, these sort of

Table 2. Contrasts Between Bayesian and Orthodox Statistics Following From Whether the Likelihood Principle Is Obeyed

Factor
When you initially intended to

stop running participants

Whether or not you
predicted a result in

advance of obtaining it
The number of tests that are

grouped in a family

Orthodox: Could this factor
affect whether or not a null
hypothesis is rejected?

Yes Yes Yes

Bayes: Does this factor ever
affect the support of data for
a hypothesis?

No. You can always run more
participants to acquire clearer
evidence if you wish

No. No one needs to
second guess which
really came first

No. Test as many different hypotheses as is
worth your time, but take into account all
evidence relevant to a theory

Note: Because orthodox statistics are sensitive to the factors listed, contrary to the likelihood principle, different people with the same data and hypothesis may
come to opposite conclusions in each case.
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probabilities can be regarded as consistent with critical

rationalism (despite Popper’s aversion to Bayes).

In sum, one notion of rationality is having sufficient justifi-

cation for one’s beliefs. If one can assign numerical continuous

degrees of justification to beliefs, then some simple minimal

desiderata lead to the ‘‘likelihood principle’’ of inference.

Hypothesis testing violates the likelihood principle, indicating

that some of the deepest held intuitions we train ourselves to

have as orthodox users of statistics are irrational on a key intui-

tive notion of rationality. For those who want to be rational in

the sense of giving a degree of justification to their conclusions,

the details of Bayes factors in practice are now considered.

Effect Size

Thus far, I have focused on how orthodox statistical inference

is influenced by factors that are irrelevant for inference

(according to the likelihood principle); next, we consider the

converse problem—namely, how typical use of statistics is

often not influenced by a factor that is logically relevant to

inference: effect size. We need to consider the issue of effect

size in order to discuss how to calculate a Bayes factor in prac-

tice. Bayes factors demand consideration of relevant effect

sizes.

A problem in many areas is that researchers have been relat-

ing theories to statistics by using the wrong question: ‘‘Is there

a difference?’’ (or ‘‘Is there an association?’’), with acceptable

answers being ‘‘yes,’’ ‘‘no,’’ or ‘‘withhold judgment,’’ depend-

ing on data and statistical persuasion. The question has the vir-

tue of simplicity. Fisher argued that the only possible answers

were ‘‘yes’’ (after a significant result, one can conclude there is

a difference) or ‘‘withhold judgment’’ (after a nonsignificant

result; see Baguley, in press; Dienes, 2008; Wright, 2010, for

overviews of Fisherian and Neyman Pearson inference). A non-

significant result does not allow a definitive conclusion,

because there might be a population difference that the test was

not sensitive enough to pick up.

Neyman developed two specific measures of sensitivity:

power and confidence intervals. A confidence interval is the set

of population values that the data are consistent with. For any

continuous measure based on a finite number of subjects, an

interval cannot be an infinitesimally small point: It may include

zero but must include other values too. So a null result is always

consistent with population values other than zero—indeed, it is

always consistent with population values on either side of zero.

That is why a nonsignificant result cannot on its own lead to the

conclusion that the null hypothesis is true; that’s why, following

Fisher, one can never accept the null hypothesis: One can only

answer ‘‘yes’’ or ‘‘withhold judgment.’’

However, theories and practical questions generally specify,

even if vaguely, relevant effect sizes. And they must, if predic-

tions of a difference are ever to be tested (as in potentially fal-

sified). The research context, if expertly known, usually

provides a range of effects that are too small to be relevant and

a range of effects that are consistent with theory or practical

use. The real research question is not the simple question with

which I started this section, but rather ‘‘Can we distinguish the

range of effects predicted or required by the main research

problem, on the one hand, and those that are too small or oth-

erwise inconsistent, on the other?’’

Researchers may initially believe they do not know what

those ranges or predictions are because they are not used to

thinking that way. But, arguably, researchers do have relevant

intuitions, and that is why it has made sense to them to assert

null hypotheses. If a researcher says ‘‘Look, those means really

are very close together,’’ then they have an implicit scale of rel-

evant effect size. It is just that they have not made all their

assumptions explicit. It is time we related our theories to statis-

tics via questions that allow the answers we need and time we

made all relevant assumptions explicit. If we want to use null

results in any way to count against theories that predict an

effect, we (logically) must consider the range of effect sizes

consistent with the theory.

Effect size is very important in the Neyman Pearson

approach: One must specify the sort of effect one predicts in

order to calculate power (this is why one can assert the null

hypothesis on the Neyman Pearson approach).7 On the other

hand, Fisherian significance testing leads people to ignore

effect sizes. People have followed Fisher’s methods, while pay-

ing lip service to effect sizes, but not heeding Fisher’s advice

that nothing follows from a null result. By contrast, one must

specify what sort of effect sizes a theory predicts to calculate

a Bayes factor. Because it takes into account effect size, the

Bayes factor distinguishes evidence that there is no relevant

effect from no evidence of a relevant effect. One can only con-

firm a null hypothesis when one has specified the effect size

expected on the theory being tested.

In specifying theoretically expected effect sizes, we should

ask ourselves ‘‘What size effect does the literature suggest is

interesting for this particular domain?’’ Rather than following

the common practice of plucking a standardized effect size of

0.5 out of thin air, researchers should get to know the data of

the field. Sometimes, when one really does not know what sort

of effect to expect, using wild speculations—like a Cohen’s

d of 0.5 because that is the sort of effect psychologists in gen-

eral often deal with—may be the best one can do. But most of

the time, researchers can do better. (For arguments for the fre-

quent relevance of raw rather than standardized effect sizes, see

Baguley, 2009; Ziliak & McCloskey, 2008.)

Despite some attempts to encourage researchers to use con-

fidence intervals, their use has not taken off (Coulson, Healey,

Fidler, & Cumming, 2010; Fidler, Thomason, Cumming,

Finch, & Leeman, 2004; Oakes, 1986). Confidence intervals

of some sort would deal with many problems (either confi-

dence, credibility, or likelihood intervals; see Dienes, 2008, for

definitions and comparison). But an approach that has a flavor

of a t or other inferential test might be accepted more readily.

Further, confidence intervals themselves have all the problems

enumerated above for Neyman Pearson inference in general

(unlike credibility or likelihood intervals): Because confidence

intervals consist of all values nonsignificantly different from

the sample mean, they inherit the arbitrariness of significance
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testing (e.g., Kruschke, 2010a). So I urge the use of the Bayes

factor for key tests in the context of theory testing or determin-

ing practical significance of an effect.8

How to Calculate a Bayes Factor

To calculate a Bayes factor in support of a theory (relative to

the null hypothesis, for example), one has to specify what the

probability of different effect sizes are, given the theory. In a

sense, this is not new: Researchers should specify predicted

effect sizes in any case. And Bayes gives us the apparatus to

flexibly deal with different degrees of uncertainty regarding the

predicted effect size. Logically, one needs to know what a the-

ory predicts in order to know how much it is supported by

evidence.

Dienes (2008) provides a Bayes factor calculator, which can

be found as a Flash program on the book’s website. The book

and website also provide the MatLab code for the Bayes factor,

and Baguley and Kaye (2010) provide corresponding R code.

The calculator requires two things: First, a summary of the data

and, second, the predictions of the theory.

What you need to enter into the Bayes factor
calculator

In terms of the data, the Bayes factor calculator asks for a mean

together with its standard error. The program assumes that the

sampling distribution of the mean is roughly normal. For exam-

ple, for the equivalent of a t test, the mean entered would be the

mean difference between conditions and the standard error

would be the standard error of this difference. If you know the

t for the data, the relevant standard error can be easily obtained

as (mean difference) / t, whether the t is repeated measures,

between subjects, or one sample.

In terms of predictions of the theory (or requirements of a

practical effect), one has to decide what range of effects are rel-

evant to the theory (or practical situation). The program allows

one to specify the range in three ways. First, one could provide

a uniform distribution—that is, all values between a lower

bound and an upper bound. All values within the bounds are

represented as possible and equally likely given the theory and

all those outside are inconsistent with the theory. Second, one

could provide a normal distribution, in which one value is the

most likely given the theory (e.g., a value often found in this

context), and any values lower or higher are progressively less

likely. One needs to specify the mean and standard deviation of

this two-tailed normal distribution. Third, one could specify a

normal distribution centered on zero with only one tail. The

theory predicts an effect in one direction, but smaller values are

generally more likely than larger values (e.g., consider a telepa-

thy experiment). One needs to specify the standard deviation

of this one-tailed normal distribution. See Dienes (2008) and

that book’s website for more explanation. Hopefully, these

three distributions capture the predictions of most theories.

The hard part is determining the best way to represent the

predictions of a theory: which of these distributions and with

what parameters? But it is precisely the careful consideration

of this question for each research domain—done with thought

and not with an automatic default—that will mean we are con-

necting theory to data with the right statistical question. (The

Appendix provides some rules of thumb.)

Examples of the three distributions

Consider a theory that predicts that a difference will be in one

direction. A minimally informative distribution, containing

only the information that the difference is positive, is to say all

positive differences are equally likely between zero and the

maximum difference allowed by the scale used. Such a vague

prediction works against finding evidence in favor of the the-

ory. Generally, researchers can do better than that. For exam-

ple, consider a learning situation in which there is a standard

set of materials and test performance is generally about 65%
(where chance is 50%)—for example, implicit learning of a

certain artificial grammar that has been extensively investi-

gated before. People are exposed to strings of letters that follow

a set of rules but are not told of the rules. Then, they are told of

the existence of the rules and classify new strings in a test

phase. In our new experiment, we speculate that asking people

to work out the rules of the grammar for 5 min after the train-

ing, but before the test, should reduce performance: We spec-

ulate that the conscious thinking will interfere with the

unconscious knowledge. Because performance on average will

be about 65% without this intervening task, the maximum

reduction is 15%. Thus, we might use a uniform distribution for

the size of reduction with equal probability between 0% and

15% reduction (rather than the implausible 0%–50%). If the

actual mean reduction is 5%, with a standard error of 2.5%,

t would be equal to 2 (just about significant, depending on

degrees of freedom). Entering these four numbers (M¼ 5% and

SE ¼ 2.5%; upper and lower bounds of mean difference pre-

dicted by theory ¼ 0% and 15%) into the online calculator

reveals that the Bayes factor in favor of the theory (that a reduc-

tion will occur) over the null hypothesis is 3.02, substantial evi-

dence for the theory over the null hypothesis (by Jeffreys’s,

1961, conventions, i.e., Bayes factor greater than 3).

We may be able to make the predictions more precise by

relating the manipulation to a previous one and suggesting the

same mechanisms are at work. For example, previous work

may have shown that being informed of the existence of rules

and trying to work them out during the training phase reduces

performance by 5%. By speculating that the same mechanism

is at play for the current manipulation (thinking about the rules

after training rather than during), one could argue that a reduc-

tion in performance of 5% would be most likely but by no

means certain. In fact, we might think any decrement from

0% to 10% is reasonably plausible. The probability density

must be close to zero for a reduction in performance of 0%,

so we could define the predictions by a normal distribution with

a mean of 5% and a standard deviation of 2.5%. Notice that the

most likely predicted effect according to the theory, based on

identifying the mechanism of change as the same as in some
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relevant past research, is as found (5%). We benefit from this

and obtain a Bayes factor of 5.22. Both analyses qualitatively

agree, but the more precisely we can predict an effect by bring-

ing to bear past research and identifying mechanisms, the stron-

ger the data can support the hypothesis (and conversely the

easier it would be to falsify the theory).

Finally, one could argue that smaller effects are more likely

than larger ones. This can be modeled by one half of a normal

distribution, with its mode at zero and its tail dropping away in

the positive direction. As similar sorts of effects as those pre-

dicted in the past have been on the order of a 5% difference

between conditions in classification accuracy (as in our exam-

ple), then the standard deviation of the normal distribution can

be set to 5%. This distribution would imply that smaller effects

are more likely than bigger ones and that effects bigger than

about 10% are unlikely. With these assumptions, the Bayes fac-

tor is 4.27. Once again, a very similar conclusion is reached,

giving confidence in the qualitative conclusion: The evidence

supports the theory of interference over the null hypothesis of

no difference.

Remember that by specifying these distributions (uniform,

normal, half-normal) you are not saying what the distribution

of the data should look like: You are specifying the plausibility

of the population mean given a theory.9

A Bayes factor compares one theory with another; thus, sev-

eral Bayes factors could be calculated to determine the relative

support for different theories. For example, if we take the the-

ory that there is some change in performance, but an increase is

as likely as a decrease, we could represent predictions by a nor-

mal two-tailed distribution centered on zero with a standard

deviation of 5. Because this theory allows more than the one-

tailed theory, it is only barely supported by the data: The Bayes

factor is 2.22, which is not substantial evidence for the theory

over the null. In general, theories that predict directions of

effect corresponding to those found in single experiments will

fare better than theories that do not, just as they should.

Bayes factors vary according to assumptions, but they can-

not be made to vary ad lib: Often a wide range of assumptions

for spelling out a particular theoretical intuition leads to essen-

tially the same conclusion (consider the first three Bayes fac-

tors above). Importantly, the assumptions are open to public

scrutiny. They can be debated and other assumptions used

according to the debate. In this sense, Bayes is objective. In

Neyman Pearson inference, the inference depends on how the

experimenter decided to stop, when he or she thought of

the hypothesis, and what other hypotheses the researcher or the

research assistant might have tested. These concerns are not

open to public scrutiny and may not even be known by the

experimenter.

Examples of how Bayes factors relate to
significance tests

Because Bayes factors connect theory to data in appropriate

ways (i.e., by taking into account effect size), Bayes puts the

results of significance testing into perspective. Consider a

theory that predicts a difference between conditions. A Bayes

factor can indicate there is more support for the null hypothesis

than for the theory after a significant result. And, vice versa, a

Bayes factor can indicate more support for the theory than for

the null hypothesis after a nonsignificant result (even if power

is controlled). Because the distribution of effects predicted by a

theory depends on the theory, no firm rules can be given for

when orthodox and Bayesian answers will differ in this respect.

It all depends on the theory considered (cf. Berger, 2003).

Consider the theory that prejudice between ethnic groups

can be reduced by making both racial groups part of the same

ingroup. A manipulation for reducing prejudice following this

idea could consist of imagining being members of the same

sports team. A control group could consist of imagining play-

ing a sport with no mention of the ethnic group. A postmanipu-

lation mean difference in prejudice (in the right direction) of x

raw units is obtained with 30 participants, equal to the standard

error of difference; a nonsignificant t value of 1.00 is obtained.

What follows from this null result? Should one reduce one’s

confidence in the theory (assuming the experiment is regarded

as well designed)? It depends. Let us say that instead of imagin-

ing the scenario, participants actually engaged in a common

activity and that a 2x reduction in prejudice on the same scale

was obtained. It seems unlikely that imagination would reduce

prejudice by more than the real thing. If smaller effects are

regarded as more likely than larger effects in general, then

we may model predictions by half a normal, with its mode

on zero, and a standard deviation of x units. In this case, the

Bayes factor is 1.38. The data are essentially uninformative, but

if anything we should be more confident in the theory after get-

ting these null results. It would be a tragic mistake to reject the

usefulness of imagination treatments for prejudice based on

this experiment. Indeed, even if the mean difference had been

exactly zero, the Bayes factor is 0.71, and one’s confidence in

the theory relative to the null should be barely altered. Even if

the mean difference had been x in the wrong direction, the

Bayes factor is still 0.43.10 This does not count as substantial

evidence against a theory by Jeffreys’s (1961) suggested con-

vention for Bayes factors of more than 3 (or less than a 1/3) for

indicating substantial evidence. Indeed, if one felt strongly con-

fident of the theory before collecting the data, one could nor-

matively still be very confident afterward. In sum, Bayes

factors, but not orthodox statistics, tell us when there is no evi-

dence for a relevant effect and when there is evidence against

there being a relevant effect.

Different ways of using Bayes factors

For a couple of other ways of using Bayes factors, see Rouder

et al. (2009) and Wetzels et al. (2011) for a suggested ‘‘default’’

Bayes factor to be used on any data where the null hypothesis is

compared with a default theory (namely, the theory that effects

may occur in either direction, scaled to a large standardized

effect size); and Kruschke (2010a, 2010b, 2011) for Bayes fac-

tors for a set of default hypotheses (much like the default

effects in analyses of variance) where inference is based on the
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posterior and thus takes into account the priors of hypotheses.

The procedure I have been illustrating, by contrast, involves

calculating Bayes factors for specific hypotheses that interest

the researcher and allows priors to remain personal and not part

of public inference. By following Bayes rule, each of these

approaches means rational answers are provided for the given

assumptions, and researchers may choose each according to

their goals and which assumptions seem relevant to them.

As mentioned earlier, Bayes factors are just one form of

Bayesian inference—namely, a method for evaluating one the-

ory against another. A researcher will often also be interested in

estimating a range of possible population values of the raw

effect size. For this, credibility or likelihood intervals can be

used (see Dienes, 2008; Kruschke, 2010b, 2011; Royall,

1997). Indeed, a researcher may use such intervals without

Bayes factors if no strong theory is at stake for the test in ques-

tion, or indeed if the intervals suffice in evaluating a theory.

Bayes offers a range of tools for the researcher. For examples

of how to write up Bayes factors for articles, see the website for

Dienes (2008).

Multiple Testing and Cheating

With Bayes factors, one does not have to worry about correc-

tions for multiple testing, stopping rules, or planned versus post

hoc comparisons. But, you might insist, all these rules in ortho-

dox statistics were there to stop cheating. If one conducts

enough different tests, one can get good results just by doing

enough tests. For example, different assumptions concerning

the predictions of a theory lead to different Bayes factors. What

is to stop a researcher picking the best one?

This concern might be partly based on a lingering feeling

that there should be one legitimate Bayes factor for a set of data

just as the applied user of orthodox statistics is sometimes

taught that there is one right test for a given situation. However,

a Bayes factor just tells you how much support given data pro-

vides for one theory over another. There is no one right Bayes

factor. For example, if one theory predicts an effect in one

direction and a competing theory predicts an effect in the other

direction, we could represent the predictions of the first theory

with a half normal distribution extending in the positive direc-

tion and the predictions of the second theory with a half normal

distribution extending in the negative direction. The Bayes fac-

tor calculator I provide on my website (Dienes, 2008) will give

Bayes factors for each of those specifications as compared to

the null, and the ratio of the provided Bayes factors will be the

Bayes factor for one theory over another. Each of these Bayes

factors is informative in its own right. Naturally, there can be as

many Bayes factors as comparisons between theories one

wishes to make.

But what about, for example, how we choose the Bayes fac-

tor for any one theory over the null—do we use a half normal or

a uniform? How do we scale each of these? With different

assumptions and different scalings, we get different answers.

What would prevent a researcher from cheating and just choos-

ing the best one?

Strictly, each Bayes factor is a completely accurate indication

of the support for the data of one theory over another, where the

theories are defined by the precise predictions they make, as we

have represented them. The crucial question is which of these

representations best matches the theory as the researcher has

described it and related it to the existing literature. One constraint

on the researcher will be the demand for consistency: Arguing for

one application of a theory ties one’s hands when it comes to

another application. And, of course, there is the tribunal of col-

leagues to get through in arguing what the theory actually pre-

dicts. One solution is to use a default Bayes factor for all

occasions (Rouder et al., 2009; Wetzels et al., 2011), though this

amounts to evaluating a default theory for all occasions, regard-

less of one’s actual theory. So a default Bayes factor will only test

your theory if it happens to correspond to the default. Another

solution is to define the predictions according to simple proce-

dures (see the Appendix) to ensure the theory proposed is tested

according to fair criteria.

Note that there is not anything wrong with finding out which

ways of representing predictions produce especially high Bayes

factors. This is not cheating but determining possible con-

straints on theory. An orthodox statistician might feel pangs

of guilt in finding out too much from the data. But absurd

claims like ‘‘do not run too many subjects otherwise you might

get a significant result for an effect size too small to be interest-

ing’’ have no place in Bayesian statistics. In Bayes, there is no

need to flagellate yourself for finding out more. The apple of

knowledge tastes good. What is needed to evaluate one theory

against another is (all) the relevant data and the two theories;

whatever other data and other theories are evaluated is simply

additional knowledge.

Finally, when using Bayes in multiple testing, one can use

the fact that one is testing multiple hypotheses to inform the

results if one believes that testing these multiple hypotheses

is relevant to the probability of any of them being true (West-

fall, Johnson, & Utts, 1997). One can use the fact that many of

the tests revealed negligible effect sizes to inform other tests if

one believes the effect sizes of the hypotheses are drawn from a

common distribution (Kruschke, 2010b, 2011). In these cases,

the other tests influence not the Bayes factor, but the prior prob-

abilities assigned to the different hypotheses tested by each

Bayes factor.

Weaknesses of the Bayesian Approach

The strengths of Bayesian analyses are also their weaknesses:

First, Bayesian analyses force people to consider what a theory

actually predicts, but specifying the predictions in detail may

be contentious. Second, Bayesian analyses escape the para-

doxes of violating the likelihood principle, described above,

but in so doing they no longer control Type I and Type II errors.

We discuss these points in turn.

Calculating a Bayes factor depends on answering the fol-

lowing question about which there may be disagreement: What

way of assigning probability distributions of effect sizes as pre-

dicted by theories would be accepted by protagonists on all
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sides of a debate? Answering this question might take some

arguing, and this may be regarded a weakness. But isn’t this

just the sort of argument that psychology has been missing out

on and could really benefit from (cf. Meehl, 1967)? People

would really have to get to know their data and their theories

better to argue what range of effect sizes their theory predicts.

This will take effort compared with simply calculating p val-

ues. But this effort will involve thinking carefully about what

specific contrasts (probably one degree of freedom) actually

address the key theoretical questions of the research, and peo-

ple will not churn out all the effects of an ANOVA, for exam-

ple, just because they can. People will think more carefully

about theoretical mechanisms so as to link experiments to past

research to predict relevant effect sizes. Results sections will

become focused, concise, and more persuasive.

To begin with, psychologists may start using Bayes factors

only to support key conclusions, especially based on null

results, in papers otherwise based on extensive orthodox statis-

tics. Of course, it would have to be done that way initially

because editors and reviewers expect orthodox statistics. And

it would be good to explore the use of Bayes factors gradually

in any case. Once Bayes factors become part of the familiar tool

box of researchers, their proper use can be considered in the

light of that experience.

An alternative response to the problem of assigning a prob-

ability distribution to effect sizes is to not take on the full Baye-

sian apparatus: One can just report likelihoods for the simple

hypotheses that the population value is 1, 1.1, . . . etc. This is

‘‘theory free’’ in the sense that no prior probabilities are needed

for these different hypotheses (see Blume, in press; Dienes,

2008, chapter 5; Johansson, in press; Royall, 1997). This pro-

cedure results in a likelihood interval, similar to confidence

interval (though one that follows the likelihood principle). The

‘‘likelihood approach’’ has the advantage of not committing to

an objective or subjective notion of probability, and not worry-

ing about precisely how to specify probability distributions

over effect sizes, while committing to the likelihood principle.

On the other hand, if a probability distribution over effect sizes

can be agreed on, the full use of Bayes can be obtained (Jaynes,

2003). In particular, one can average out nuisance parameters,

and assign relative degrees of support to different theories each

consistent with a range of effect sizes.

The second potential weakness is that Bayesian procedures,

because they are not concerned with long term frequencies, are

not guaranteed to control Type I and Type II error probabilities

of decision procedures (Mayo, 1996).

Royall (1997) showed how the probability of making certain

errors with a likelihood ratio—or Bayes factor—can be calcu-

lated in advance. In particular, for a planned number of sub-

jects, one can determine the probability that the evidence will

be weak (Bayes factor close to 1) or misleading (Bayes factor

in wrong direction). These error probabilities have interesting

properties compared to Type I and II error rates. No matter how

many subjects one runs, the Type I error is always the same:

typically 5%. But for Bayes factors, the more subjects one runs,

the smaller the probability of weak or misleading evidence.

Further, these probabilities decrease as one runs more subjects,

no matter what one’s stopping rule is. One can always decide to

run more subjects to firm up the evidence.

Nonetheless, Mayo (1996) argued that Type I and II errors

are things scientists want to avoid; but a Bayesian analysis does

not control them. If we want to control them, we need to use

Neyman Pearson statistics (or a close variant). And then we are

compelled to violate the likelihood principle.

Ultimately, the issue is about what is more important to us:

using a procedure with known long term error rates or knowing

the degree of support for our theory (the amount by which we

should change our conviction in a theory). If we want to know

the degree of evidence or support for our theory, then our

reliance on orthodox statistics is irrational.

Conclusion

I suggest that the arguments for Bayes are sufficiently compel-

ling that psychologists should be aware of the debates at the

logical foundations of their statistics and make an informed

choice between approaches for particular research questions.

The choice is not just academic—it would profoundly affect

what we actually do as researchers.

Appendix

What Does My Theory Predict?

Here are some rules of thumb for deciding how to represent

what a theory predicts, but bear in mind that representing the

predictions of a theory cannot be automated because for a given

theory there is no telling what consideration may be relevant.

These suggestions are thus not exhaustive.

1. Some scales have determinable limits (either logically

determined or by background knowledge).11 For example,

if a 0 to 5 rating scale is used, the difference between con-

ditions cannot exceed 5. Thus, if all one is willing to say is

that the theory predicts that ‘‘there will be a positive

difference,’’ one could use a uniform over the range seen

in Figure A1.

2. In such cases, one may feel it absurd to think that all

such differences are equally plausible (as a uniform

Plausibility 

−5 0 5 

Population difference between conditions   →

Fig. A1.
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represents it); in fact, the smaller values are more likely

than larger values. Then, use a half-normal distribution

with a mode of zero and a standard deviation of half the

range (e.g., in the example above, let SD ¼ 2.5). See

Figure A2.

3. Often there is relevant prior research that uses a theoreti-

cally similar manipulation with the same dependent vari-

able. Maybe a previous similar experiment found a

difference of 0.85 units. This helps inform us, but of course

one cannot generalize perfectly from past experiments. So

based on the principle ‘‘when in doubt spread it out,’’

round up to 1 unit and use this as the mean of a two tailed

normal with an SD equal to half that value. See Figure A3.

4. Alternatively if one thought smaller values were more

likely than larger values, take the (rounded up) value from

past research and use it as the standard deviation of a half

normal with a mode of zero. See Figure A4.

5. It may be difficult to find past research with the same

dependent variable. The best way of scaling predictions

may be with a standardized effect size (Cohen’s d for

between-subjects and dz for within-subjects, or the corre-

lation r for either). One could use an estimate of the rel-

evant SD in the dependent variable one is using (within-

group SD for d and SD of differences for dz) to convert

the standardized effect to a raw difference and use

Guideline 3 or 4 above. Or more elegantly, directly use

the standardized effect size, Cohen’s d or dz,12 to scale

the predictions of the Rouder Bayes factor calculator

(http://pcl.missouri.edu/bayesfactor). Bear in mind that

the predictions in the Rouder calculator are treated as

two tailed, so the Bayes factor is not appropriate for the-

ories that predict a direction. Alternatively, the standar-

dized effect size can be represented as a correlation, r,

which can be converted a normally distributed variable,

allowing the Dienes calculator to be used to flexibly rep-

resent different theories (e.g., directional ones). I now

consider an example.

Wetzels et al. (2011) consider an experiment by Muss-

weiler (2006), who assessed whether unobtrusively indu-

cing people to move in a portly manner would (in

comparison with a control group) make subjects view an

ambiguous target person as more overweight. The

significance test yielded t(18) ¼ 2.1, p ¼ .05. Wetzel

et al. use the Rouder Bayes factor, which assumes an alter-

native theory for which effects in either direction are just as

plausible, and scaled for large effects (Cohen’s d¼ 1). The

Bayes factor was 1.56, barely evidence for the Rouder alter-

native theory over the null. However, Mussweiler clearly

makes a directional prediction so the theory is not directly

assessed by the Rouder Bayes factor. I will use the Dienes

calculator to obtain a Bayes factor that assesses Musswei-

ler’s theory.

To convert Mussweiler’s obtained effect into a correlation

coefficient r, use the formula: r2 ¼ t2 / (t2 þ df). Thus,

the obtained effect is r ¼p½2:12ð2:12 þ 18Þ� ¼ 0.44. r can

be converted to Fisher’s z to make it normally distributed:

Fisher’s z ¼ 0.5 � loge[|(1 þ r) / (1 � r)|] ¼ 0.5 � loge

(1.44 / 0.56) ¼ 0.47. Fisher’s z has a standard error of 1 /p
(N – 3) where N is the total number of subjects. So standard

error ¼ 1 /
pð20� 3Þ ¼ 0.24. So far, we have found

the summary of the data needed to enter into the Dienes

Bayes factor calculator: The mean is .47 and the standard

error is .24.

Now we need to specify the predictions of the theory.

Mussweiler bases his effect on previous similar social

priming explored by Bargh, Chen, and Burrows (1996),

who found large effects (Cohen’s d of about one). We will

use Guideline 4 above, and scale with a large effect size. A

Cohen’s d of 1 corresponds to an r of .44,13 which is a

Fisher’s z of .47. So to represent the predictions of the the-

ory, we will use a half-normal distribution with a mode of

zero and a standard deviation of .47. This gives a Bayes

factor of 4.00, substantial evidence for Mussweiler’s the-

ory over the null. The example shows the difference

between using an automatic Bayes factor (as Wetzel

Plausibility 

−5 0 5 

SD = half range

Population difference between conditions   →

Fig. A2.

Plausibility 

−5 0 1 2 3 4 5 

Mean ≈ mean from other studies  

SD ≈  ½ * mean from other studies 

Population difference between conditions   →

Fig. A3.

Plausibility 

−5 0 1 2 3 4 5 

SD ≈ mean from other studies 

Population difference between conditions   →

Fig. A4.
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et al. do, Bayes factor¼ 1.54), and a Bayes factor designed

to assess a theory an author has in mind (as we have done

here, Bayes factor ¼ 4).

When you assess a theory by raw effect size, it makes

you think clearly about the absolute magnitude of the

effect; when you assess a theory with standardized effect

size, the concern is with the consistency of the effect. Both

can be relevant, but bear in mind that standardized effects

will be affected by considerations unrelated to most the-

ories, such as number of trials and other factors in the anal-

ysis that reduce mean square error. Thus, for the most part,

theories will be best assessed by considering their predic-

tions in terms of a raw effect size on a meaningful scale.
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Notes

1. Power can be calculated in the Bayesian approach to determine

likely numbers of subjects needed to make a point, though this is

a practical matter, and power does not figure in the inferential pro-

cedure itself, unlike in the Neyman Pearson approach (see

Kruschke, 2010 a, 2010b, 2010c; Royall, 1997).

2. Bayes theorem is a means for converting one conditional probabil-

ity, for example, P(D | H), into its inverse, P(H | D). It states that

P(H | D) ¼ P(D | H) � P(H) / P(D). The expression in the text

ignores P(D), the probability of the data, because P(D) is not

needed when the data is treated as fixed rather than variable:

P(D) either just becomes a scaling constant for making P(H | D)

sum to unity (over the distribution of possible hypotheses) or it can-

cels out, as in the Bayes factor below. Note that this is a key differ-

ence with significance testing: To get a p value, the hypothesis is

fixed and different possible data are considered; in Bayesian statis-

tics, the data are given and different possible hypotheses are

considered.

3. Using the Bayes rule for two hypotheses, H1 and H2, for given

data, D, we have

P(H1 | D) ¼ P(D | H1) � P(H1) / P(D)

and

P(H2 | D) ¼ P(D | H2) � P(H2) / P(D).

When dividing the former by the latter

P(H1 | D) / P(H2 | D)¼ (D | H1) / P(D | H2)� P(H1) / P(H2)�
P(D) / P(D),

the last term cancels out and we are left with

ratio of posterior probabilities ¼ ratio of likelihoods � ratio of

priors (i.e., Posterior odds ¼ Bayes factor * prior odds).

4. Kruschke (2010a) considers another stopping rule similar to one

people often use: Collect as many subjects as you can until the end

of the week (or as many students as turn up for the practical, etc.).

Different applications of this rule will produce differing numbers

of subjects. Thus, to calculate a p value, one cannot just use the

value from SPSS, which implicitly assumes the stopping rule was

to run until reaching the precise number of subjects obtained.

Instead, one needs to take into account the distribution of the

different numbers of subjects the rule entails one might have run;

one could run a simulation of thousands of experiments to deter-

mine the resulting distribution of t and, hence, the p value. Simply

using the output of SPSS is cheating.

5. Consider 20 independent tests of ESP on different psychics; each

psychic has to select the right item out of 20 items. So P(correct

answer | H0) ¼ .05 and P(incorrect answer | H0) ¼ .95 for the test

for each psychic. Let us assume P(correct answer | psychic has

ESP) ¼ .95 and P(incorrect answer | psychic has ESP) ¼ .05.

Thus, if only one psychic passes the test out of 20, the likelihood

of the theory that all psychics have ESP is .95(.05)19 and the like-

lihood of the family-wise null is (0.95)19.05. Thus, the Bayes fac-

tor in favor of the theory that all the psychics have ESP over the

null is (1/19)18. Further, the Bayes factor for the theory that there

is a 1/20 probability that any one of them has ESP, over the null, is

0.75. The data support the family-wise null over either of these

theories that ESP exists.

6. As Halpern (1999) indicates, Cox did assume that beliefs are

strictly continuous (i.e., that one can make infinitesimally small

distinctions between different degrees of belief). Of course, this

is not realistic for our actual beliefs; nonetheless, Cox’s degrees

of belief can still serve as normative models.

7. One must specify m, the minimal effect that could plausibly be

expected given the theory. Then, assuming that any population effect

is due to the theory, the null can be accepted if a nonsignificant result

was obtained and there was sufficient power to detect m or if the con-

fidence interval includes zero but excludes m (see Dienes, 2008).

Thus, specifying the power for a ‘‘medium effect size’’ is only infer-

entially relevant if a medium effect happens to be the minimal effect

that could plausibly be expected given the theory.

8. Crediblity intervals can be used when one believes any precise value,

including zero, has zero probability; if one wanted to give a finite

probability to a precise value, like a difference of precisely zero, then

Bayes factors are appropriate. For a standard credibility interval, the

null hypothesis has zero probability before and after collecting data,

so it can always be rejected with complete confidence.

9. Consider the following example. The data are passing or failing a

test—if a person fails they get a 0, if they pass they get a 1. You

should be able to see that the distribution of scores is not at all

normal in any way. What is the population mean? If 40% of

people pass, the mean is .4. If 70% pass, the mean is .7. I might

have reason to think (e.g., based on past papers) that about 60%

of people pass and that values more than this are increasingly

unlikely and values less than this are increasingly unlikely. So

I could represent the plausibility of different possible mean

values as a normal with a mean of 0.6 and, say, a standard

deviation of 0.1. This indicates that I am pretty sure the popu-

lation mean lies between 0.4 and 0.8. But it is important to note

that no subject has a score between 0.4 and 0.8. Each subject is

either 0 or 1. Just so, the distributions we have been talking

about are the distribution of the plausibility of population mean

values and not the distribution of the data.

10. To get these results, enter the following into the Bayes factor cal-

culator: Answer ‘‘no’’ to the question ‘‘Is the distribution uni-

form?"; enter ‘‘0’’ for the mean of the distribution, ‘‘1’’ for the

standard deviation, and ‘‘1’’ for number of tails. These entries
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define the predictions of the theory. Now for the data. When the

mean is one standard error in the right direction, enter ‘‘1’’ for

mean and ‘‘1’’ for standard error; when the mean is 0, enter

‘‘0’’ for mean and ‘’’1’’ for standard error; when the mean is one

standard error in the wrong direction, enter ‘‘�1’’ for the mean

and ‘‘1’’ for standard error.

11. For example, according to signal detection theory, Type II d’ can-

not be greater than Type I (so this can be a constraint in investi-

gating metacognition; see Dienes, 2010).

12. For a between-group t test, Cohen’s d ¼ (mean difference

between groups) / (pooled SD within a group). If there are equal

numbers of subjects (n) within each group, then d ¼ t
pð2=nÞ. For

a within-subjects or one-sample t test, Cohen’s dz¼ (mean differ-

ence)/(standard deviation of the difference scores). To obtain dz

from a paper, use dz ¼ t /
p

n.

13. r2¼ d2/(d2þ 4) for the between subjects case, and r2¼ dz2/(dz2þ
1) for the within-subjects case.
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