Algebras and General Frames

In this chapter we develop an algebraic semantics for modal logic. The basic idea
is to extend the algebraic treatment of classical propositional logic (which uses
boolean algebras) to modal logic. The algebras employed to do this are called
boolean algebras with operators (BAOs). The boolean part handles the underlying
propositional logic, the additional operators handle the modalities.

But why algebraize modal logic? There are two main reasons. First, the alge-
braic perspective allows us to bring powerful new techniques to bear on modal-
logical problems. Second, the algebraic semantics turns out to be better behaved
than frame-based semantics: we will be able to prove an algebraic completeness
result for every normal modal logic. As our discussion of incompleteness in Sec-
tion 4.4 makes clear, no analogous result holds for frames.

This chapter has three main parts. The first, consisting of the first three sections,
introduces the algebraic approach: we survey the basic ideas in the setting of clas-
sical propositional logic, extend them to modal logic, and prove the Jonsson-Tarski
Theorem. The second part, which consists of the fourth section, introduces dual-
ity theory, the study of correspondences between the universe of algebras and the
universe of frames. The last part (the only part on the advanced track), is devoted
to general frames. These turn out to be set-theoretic representations of boolean
algebras with operators, and we examine their properties in detail, and use them to
prove the Sahlqvist Completeness Theorem. Background information on universal
algebra can be found in Appendix B.

Chapter guide

Section 5.1: Logic as Algebra (Basic track). What is algebraic logic? This sec-
tion provides some preliminary answers by examining the relationship be-
tween propositional logic and boolean algebras.

Section 5.2: Algebraizing Modal Logic (Basic track). To algebraize modal logic,
we introduce boolean algebras with operators (BAOs). We discuss BAOs
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264 5 Algebras and General Frames

from a semantic perspective (introducing an important class of BAOs called
complex algebras), and from a syntactic perspective (we use Lindenbaum-
Tarski algebras to obtain abstract BAOs from normal modal logics).

Section 5.3: The Jonsson-Tarski Theorem (Basic track). Here we prove the the-
orem underlying algebraic approaches to modal completeness theory. First
we learn how to construct a frame from an algebra by forming the ultra-
filter frame. By turning this frame back into a complex algebra, we ob-
tain the canonical embedding algebra. We then prove the Jonsson-Tarski
Theorem: every boolean algebra with operators can be embedded in its
canonical embedding algebra.

Section 5.4: Duality Theory (Basic track). Frames are inter-related by bounded
morphisms, generated subframes, and disjoint union. Boolean algebras
with operators are inter-related by homomorphisms, subalgebras, and di-
rect products. Modal duality theory studies the relationship between these
two mathematical universes. Two applications are given, one of which is
an algebraic proof of the Goldblatt-Thomason Theorem.

Section 5.5: General Frames (Advanced track). We (re)introduce general frames
and study them in detail, focusing on the relationship between general
frames, frames, and boolean algebras with operators. We conclude with a
brief discussion of some important topological aspects of general frames.

Section 5.6: Persistence (Advanced track). In this section we introduce a natural
generalization of the notion of canonicity encountered in Chapter 4: per-
sistence. We use it to prove the Sahlgvist Completeness Theorem.

5.1 Logic as Algebra

What do algebra and logic have in common? And why bring algebra into the study
of logic? This section provides some preliminary answers: we show that algebra
and logic share key ideas, and analyze classical propositional logic algebraically.
Along the way we will meet a number of important concepts (notably formula
algebras, the algebra of truth values, set algebras, abstract boolean algebras, and
Lindenbaum-Tarski algebras) and results (notably the Stone Representation Theo-
rem), but far more important is the overall picture. Algebraic logic offers a natural
way of re-thinking many basic logical issues, but it is important not to miss the
wood for the trees. The bird’s eye view offered here should help guide the reader
through the more detailed modal investigations that follow.

Algebra as logic

Most school children learn how to manipulate simple algebraic equations. Given
the expression (z + 3)(x + 1), they learn how to multiply these factors to form
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22 + 4z + 3, and (somewhat later) study methods for doing the reverse (that is, for
decomposing quadratics into factors).

Such algebraic manipulations are essentially logical. For a start, we have a well
defined syntax: we manipulate equations between ferms. This syntax is rarely
explicitly stated, but most students (building on the analogy with basic arithmetic)
swiftly learn how to build legitimate terms using numerals, variables such as z, y,
and z, and +, -, and —. Moreover, they learn the rules which govern this symbol
manipulation process: replacing equals by equals, doing the same thing to both
sides of an equation, appealing to commutativity, associativity and distributivity to
simplify and rearrange expressions. High-school algebra is a form of proof theory.

But there is also a semantic perspective on basic algebra, though this usually
only becomes clear later. As students learn more about mathematics, they realize
that the familiar ‘laws’ don’t hold for all mathematical objects: for example, ma-
trix multiplication is not commutative. Gradually the student grasps that variables
need not be viewed as standing for numbers: they can be viewed as standing for
other objects as well. Eventually the semantic perspective comes into focus: there
are various kinds of algebras (that is, sets equipped with collections of functions,
or operations, which satisfy certain properties), and terms denote elements in al-
gebras. Moreover, an equation such as x - y = y - x is not a sacrosanct law: it’s
simply a property that holds for some algebras and not for others.

So algebra has a syntactic dimension (terms and equations) and a semantic di-
mension (sets equipped with a collection of operations). And in fact there is a
tight connection between the proof theory algebra offers and its semantics. In
Appendix B we give a standard derivation system for equational logic (that is, a
standard set of rules for manipulating equations) and state a fundamental result due
to Birkhoff: the system is strongly sound and complete with respect to the standard
algebraic semantics. Algebra really can be viewed as logic.

But logic can also be viewed as algebra. We will now illustrate this by examin-
ing classical propositional logic algebraically. Our discussion is based around three
main ideas: the algebraization of propositional semantics in the class of set alge-
bras; the algebraization of propositional axiomatics in the class of abstract boolean
algebras; and how the Stone Representation Theorem links these approaches.

Algebraizing propositional semantics

Consider any propositional formula, say (p V q) A (p V r). The most striking thing
about propositional formulas (as opposed to first-order formulas) is their syntactic
simplicity. In particular, there is no variable binding — all we have is a collection
of atomic symbols (p, ¢, 7, and so on) that are combined into more complex ex-
pressions using the symbols L, T, —, V and A. Recall that we take L, — and V as
the primitive symbols, treating the others as abbreviations.
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Now, as the terminology ‘propositional variable’ suggests, we think of p, ¢, and
r as symbols denoting entities called propositions, abstract bearers of information.
So what do L, T, =, V and A denote? Fairly obviously: ways of combining
propositions, or operations on propositions. More precisely, V and A must denote
binary operations on propositions (let’s call these operations + and - respectively),
— must denote a unary operation on propositions (let’s call it —), while L and T
denote special nullary operations on propositions (that is, they are the names of two
special propositions: let’s call them 0 and 1 respectively). In short, we have worked
our way towards the idea that formulas can be seen as terms denoting propositions.

But which kinds of algebras are relevant? Here’s a first step towards an answer.

Definition 5.1 Let Bool be the algebraic similarity type having one constant (or
nullary function symbol) L, one unary function symbol —, and one binary function
symbol V. Given a set of propositional variables @, Form(®) is the set of Bool-
terms in @; this set is identical to the collection of propositional formulas in @.

Algebras of type Bool are usually presented as 4-tuples 2A = (A, +,—,0). We
make heavy use of the standard abbreviations - and 1. That is, a - b is shorthand for
—(—a+ —b), and 1 is shorthand for —0. -

But this only takes us part of the way. There are many different algebras of this
similarity type — and we’re only interested in algebras which can plausibly be
viewed as algebras of propositions. So let’s design such an algebra. Propositional
logic is about truth and falsehood, so lets take the set 2 = {0,1} as the set A
underlying the algebra; we think of ‘0’ as the truth value false, and ‘1’ as the value
true. But we also need to define suitable operations over these truth values, and we
want these operations to provide a natural interpretation for the logical connectives.
Which operations are appropriate?

Well, the terms we are working with are just propositional formulas. So how
would we go about evaluating a formula y in the truth value algebra? Obviously
we would have to know whether the proposition letters in x are true or false, but
let’s suppose that this has been taken care of by a function 8 : & — 2 mapping the
set @ of proposition letters to the set 2 of truth values. Given such a 6 (logicians
will call 0 a valuation, algebraists will call it an assignment) it is clear what we
have to do: compute é(qS) according to the following rules:

) = 6(p), forallp € @
) = 0

B0) = 1-0()
) = max(0(¢),0(1)).

Clearly the operations used here are the relevant ones; they simply restate the fa-
miliar truth table definitions. This motivates the following definition:

(5.1)
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Definition 5.2 The algebra of truth values is 2 = ({0,1},+, —,0)), where — and
+ are defined by —a = 1 — a and a + b = max(a, b), respectively.

Let’s sum up our discussion so far. The crucial observations are that formulas can
be viewed as terms, that valuations can be identified with algebraic assignments
in the algebra 2, and that evaluating the truth of a formula under such a valua-
tion/assignment is exactly the same as determining the meaning of the term in the
algebra 2 under the assignment/valuation.

So let’s move on. We have viewed meaning as a map 0 from the set Form (D)
to the set {0, 1} — but it is useful to consider this meaning function in more math-
ematical detail. Note the ‘shape’ of the conditions oné in (5.1): the resemblance
to the defining condition of a siomomorphism is too blatant to miss. But since ho-
momorphisms are the fundamental maps between algebras (see Appendix B) why
not try and impose algebraic structure on the domain of such meaning functions
(that is, on the set of formulas/terms) so that meaning functions really are homo-
morphisms? This is exactly what we are about to do. We first define the needed
algebraic structure on the set of formulas.

Definition 5.3 Let ¢ a set of propositional variables. The propositional formula
algebra over @ is the algebra

Form(®P) = (Form(P),+,—, L),

where @ is the collection of propositional formulas over @, and — and + are the
operations defined by —¢ := —¢ and ¢ + ¢ := ¢ V 1, respectively.

In other words, the carrier of this algebra is the collection of propositional formulas
over the set of proposition letters @, and the operations — and + give us a simple
mathematical picture of the dynamics of formula construction.

Proposition 5.4 Let ¢ be some set of proposition letters. Given any assignment
0 : ® — 2, the function 0 : Form(®) — 2 assigning to each formula its meaning
under this valuation, is a homomorphism from Form(®P) fo 2.

Proof. A precise definition of homomorphism is given in Appendix B. Essentially,
homomorphisms between algebras map elements in the source algebra to elements
in the target algebra in an operation preserving way — and this is precisely what
the conditions in 6 in (5.1) express.

The idea of viewing formulas as terms, and meaning as a homomorphism, is fun-
damental to algebraic logic.

Another point is worth stressing. As the reader will have noticed, sometimes we
call a sequence of symbols like p V ¢ a formula, and sometimes we call it a term.
This is intentional. Any propositional formula can be viewed as — simply is — an
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algebraic term. The one-to-one correspondence involved is so obvious that it’s not
worth talking about ‘translating’ formulas to terms or vice-versa; they’re simply
two ways of looking at the same thing. We simply choose whichever terminology
seems most appropriate to the issue under discussion.

But let’s move on. As is clear from high-school algebra, algebraic reasoning is
essentially equational. So a genuinely algebraic logic of propositions should give
us a way of determining when two propositions are equal. For example, such a
logic should be capable of determining that the formulas p VV (¢ A p) and p denote
the same proposition. How does the algebraic approach to propositional semantics
handle this? As follows: an equation s == t is valid in an algebra 2 if for every
assignment to the variables occurring in the terms, s and ¢ have the same meaning
in U (see Appendix B for further details). Hence, an algebraic way of saying that
a formula ¢ is a classical tautology (notation: = ¢) is to say that the equation
¢ =~ T is valid in the algebra of truth values.

Now, an attractive feature of propositional logic (a feature which extends to
modal logic) is that not only terms, but equations correspond to formulas. There
is nothing mysterious about this: we can define the bi-implication connective <+ in
classical propositional logic, and viewed as an operation on propositions, > asserts
that both terms have the same meaning:

1 if0(¢) = 0(v)

0 otherwise.

b0 ) = {

So to speak, propositional logic is intrinsically equational.
Theorem 5.5 neatly summarizes our discussion so far: it shows how easily we
can move from a logical to an algebraic perspective and back again.

Theorem 5.5 (2 Algebraizes Classical Validity) Let ¢ and 1) be propositional
Sformulas/terms. Then

o iff 2EO~T (52)
2oy i Ecd U (53)
e ¢ & (64 T) (54)

Proof. Immediate from the definitions.

Remark 5.6 The reader may wonder about the presence of (5.3) and in particular,
of (5.4) in the Theorem. The point is that for a proper, ‘full’, algebraization of a
logic, one has to establish not only that the membership of some formula ¢ in the
logic can be rendered algebraically as the validity of some equation ¢° in some

(class of) algebra(s). One also has to show that conversely, there is a translation
of equations to formulas such that the equation holds in the class of algebras if
and only if its translation belongs to the logic. And finally, one has to prove that
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translating a formula ¢ to an equation ¢, and then translating this equation back
to a formula, one obtains a formula ¢/ that is equivalent to the original formula ¢.
The fact that our particular translations satisfy these requirements is stated by (5.3)
and (5.4), respectively.

Since we will not go far enough into the theory of algebraic logic to use these
‘full” algebraizations, in the sequel we will only mention the first kind of equiva-
lence when we algebraize a logic. Nevertheless, in all the cases that we consider,
the second and third requirements are met as well.

Set algebras

Propositional formulas/terms and equations may be interpreted in any algebra of
type Bool. Most algebra of this type are uninteresting as far as the semantics of
propositional logic is concerned — but other algebras besides 2 are relevant. A
particularly important example is the class of set algebras. As we will now see,
set algebras provide us with a second algebraic perspective on the semantics of
propositional logic. And as we will see in the following section, the perspective
they provide extends neatly to modal logic.

Definition 5.7 (Set Algebras) Let A be a set. As usual, we denote the power set
of A (the set of all subsets of A) by P(A). The power set algebra B(A) is the
structure

m(A) = (P(A)v U, —, @)7

where @ denotes the empty set, — is the operation of taking the complement of
a set relative to A, and U that of taking the union of two sets. From these basic
operations we define in the standard way the operation N of taking the intersection
of two sets, and the special element A, the fop set of the algebra.

A set algebra or field of sets is a subalgebra of a power set algebra. That is, a set
algebra (on A) is a collection of subsets of A that contains & and is closed under
U and — (so any set algebra contains A and is closed under N as well). The class
of all set algebras is called Set.

Set algebras provide us with a simple concrete picture of propositions and the way
they are combined — moreover, it’s a picture that even at this stage contains a
number of traditional modal ideas. Think of A as a set of worlds (or situations,
or states) and think of a proposition as a subset of A. And think of a proposition
as a set of worlds — the worlds that make it true. So viewed, & is a very special
proposition: it’s the proposition that is false in every situation, which is clearly a
good way of thinking about the meaning of L. Similarly, A is the proposition true
in all situations, which is a suitable meaning for T. It should also be clear that U
is a way of combining propositions that mirrors the role of V. After all, in what



270 5 Algebras and General Frames

worlds is p V ¢ true? In precisely those worlds that make either p true or ¢ true.
Finally, complementation mirrors negation, for —p is true in precisely those worlds
where p is not true.

As we will now show, set algebras and the algebra 2 make precisely the same
equations true. We’ll prove this algebraically by showing that the class of set alge-
bras coincides (modulo isomorphism) to the class of subalgebras of powers of 2.
The crucial result needed is the following:

Proposition 5.8 Every power set algebra is isomorphic to a power of 2, and con-
versely.

Proof. Let A be an arbitrary set, and consider the following function y mapping
elements of P(A) to 2-valued maps on A:

1 ifae X
X(X)(a) = { 0 otherwise.

In other words, x(X) is the characteristic function of X . The reader should verify
that y is an isomorphism between (A) and 2.

Conversely, to show that every power of 2 is isomorphic to some power set
algebra, let 2/ be some power of 2. Consider the map a : 2/ — P(I) defined by

a(f)y={iel|fli)=1}

Again, we leave it for the reader to verify that « is the required isomorphism be-
tween 27 and B(I). -

Theorem 5.9 (Set algebraizes classical validity) Let ¢ and 1) be propositional
formulas/terms. Then

Fc ¢ iff SetlEoxT. 5.5

Proof. Tt is not difficult to show from first principles that the validity of equations is
preserved under taking direct products (and hence powers) and subalgebras. Thus,
with the aid of Theorem 5.5 and Proposition 5.8, the result follows. -

Algebraizing propositional axiomatics

We now have two equational perspectives on the semantics of propositional logic:
one via the algebra 2, the other via set algebras. But what about the syntactic
aspects of propositional logic? It’s time to see how the equational perspective
handles such notions as theoremhood and provable equivalence.

Assume we are working in some fixed (sound and complete) proof system for
classical propositional logic. Let = ¢ mean that ¢ is a theorem of this system, and
call two propositional formulas ¢ and ¢ provably equivalent (notation: v = 1)
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if the formula ¢ <> v is a theorem. Theorem 5.11 below is a syntactic analog of
Theorem 5.9: it is the fundamental result concerning the algebraization of propo-
sitional axiomatics. Its statement and proof makes use of boolean algebras, so lets
define these important entities right away.

Definition 5.10 (Boolean Algebras) Let 2( = (A, +, —,0) be an algebra of the
boolean similarity type. Then 2l is called a boolean algebra iff it satisfies the
following identities:

(BO) z+y=y+x Toy=y-x

(Bl) z+(y+z2)=(@+y +=z v (y-z)=(x-y) 2

(B2) z4+0==x r-1=1

(B3) z+(—z)=1 z-(—x)=0

(B4) z+(y-2)=(x+y) (x+2) v (y+z)=(x-y) +(x-2)

We order the elements of a boolean algebra by defining a < bifa + b = b (or
equivalently, if a - b = a). Given a boolean algebra 24 = (A, +, —,0), the set A is
called its carrier set. We call the class of boolean algebras BA. -

By a famous result of Birkhoff’s (discussed in Appendix B) a class of algebras
defined by a collection of equations is what is known as a variety. Thus in what
follows we sometimes speak of the variety of boolean algebras, rather than the
class of boolean algebras.

If you haven’t encountered boolean algebras before, you should check that the
algebra 2 and the set algebras defined earlier are both examples of boolean algebras
(that is, check that these algebras satisfy the listed identities). In fact, set algebras
are what are known as concrete boolean algebras. As we will see when we dis-
cuss the Stone Representation Theorem, the relationship between abstract boolean
algebras (that is, any algebraic structure satisfying the previous definition) and set
algebras lies at the heart of the algebraic perspective on propositional soundness
and completeness.

But this is jumping ahead: our immediate task is to state the syntactic analog of
Theorem 5.9 promised above.

Theorem 5.11 (BA Algebraizes Classical Theoremhood) Let ¢ and 1) be propo-
sitional formulas/terms. Then

e ¢ iff BAEG~T. (5.6)

Proof. Soundness (the direction from left to right in (5.6) can be proved by a
straightforward inductive argument on the length of propositional proofs. Com-
pleteness will follow from the Propositions 5.14 and 5.15 below. -

How are we to prove this completeness result? Obviously we have to show that ev-
ery non-theorem of classical propositional logic can be falsified on some boolean
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algebra (falsified in the sense that there is some assignment under which the for-
mula does not evaluate to the top element of the algebra). So the key question is:
how do we build falsifying algebras? Our earlier work on relational completeness
suggests an answer. In Chapter 4 we made use of canonical models: that is, we
manufactured models out of syntactical ingredients (sets of formulas) taking care
to hardwire in all the crucial facts about the logic. So the obvious question is: can
we construct algebras from (sets of) formulas in a way that builds in all the proposi-
tional logic we require? Yes, we can. Such algebras are called Lindenbaum-Tarski
algebras. In essence, they are ‘canonical algebras’.

First some preliminary work. The observation underpinning what follows is that
the relation of provable equivalence is a congruence on the formula algebra. A
congruence on an algebra is essentially an equivalence relation on the algebra that
respects the operations (a precise definition is given in Appendix B) and it is not
hard to see that provable equivalence is such a relation.

Proposition 5.12 The relation =¢ is a congruence on the propositional formula
algebra.

Proof. We have to prove that =¢ is an equivalence relation satisfying

¢ =C w Ol’lly lf —|¢5 =C —wﬂ (57)
and
Po =c o and ¢1 =¢ ¢y only if (¢o V ¢1) =¢ (Yo V ¥1). (5.8)

In order to prove that =¢ is reflexive, we have to show that for any formula ¢, the
formula ¢ <> ¢ is a theorem of the proof system. The reader is invited to prove
this in his or her favorite proof system for proposition calculus. The properties of
symmetry and transitivity are also left to the reader.

But we want to prove that =¢ is not merely an equivalence relation but a congru-
ence. We deal with the case for negation, leaving (5.8) to the reader. Suppose that
¢ =c 1, thatis, Fo ¢ < 1. Again, given that we are working with a sound and
complete proof system for propositional calculus, this implies that - —¢ < —).
Given this, (5.7) is immediate.

The equivalence classes under =¢ are the building blocks for what follows. As any
such class is a maximal set of mutually equivalent formulas, we can think of such
classes as propositions. And as =¢ is a congruence, we can define a natural al-
gebraic structure on these propositions. Doing so gives rise to Lindenbaum-Tarski
algebras.

Definition 5.13 (Lindenbaum-Tarski Algebra) Given a set of proposition letters
&, let Form(®)/=c¢ be the set of equivalence classes that = induces on the set
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of formulas, and for any formula ¢ let [¢] denote the equivalence class containing
¢. Then the Lindenbaum-Tarski algebra (for this language) is the structure

Lc(P) = (Form(®)/=¢,+, —,0),

where +, — and 0 are defined by: [¢] + [¢] := [¢ V ], —[¢] := [-¢] and O :=
[L]. Strictly speaking, we should write [¢] instead of [¢], for ¢’s congruence
class depends on the set @ of proposition letters. But unless there is potential for
confusion, we usually won’t bother to do so.

Lindenbaum-Tarski algebras are easy to work with. As an example, we show that
a+ (—a) = 1 for all elements a of £-(P). The first observation is that a, just like
any element of £¢(®), is of the form [¢] for some formula ¢. But then we have

a+(=a) =[]+ (=[¢]) = [¢] + [~0] = [oV (=¢)] = [T] = L, (5.9)

where the fourth equality holds because k¢ (¢ V —¢) <> T.

We need two results concerning Lindenbaum-Tarski algebras. First, we have to
show that they are indeed an ‘algebraic canonical model’ — that is, that they give
us a counterexample for every non-theorem of propositional logic. Second, we
have to show that they are counterexamples of the right kind: that is, we need to
prove that any Lindenbaum-Tarski algebra is a boolean algebra.

Proposition 5.14 Let ¢ be some propositional formula, and @ a set of proposition
letters of size not smaller than the number of proposition letters occurring in ¢.
Then

Feoiff Lo(@) == T. (5.10)

Proof. We may and will assume that ¢ actually contains all variables occurring in
¢, cf. Exercise 5.1.4. We first prove the easy direction from right to left. Assume
that ¢ is not a theorem of classical propositional logic. This implies that ¢ and
T are not provably equivalent, whence we have [¢] # [T]. We have to find an
assignment on £-(®P) that forms a counterexample to the validity of ¢. There is
one obvious candidate, namely the assignment ¢ given by «(p) = [p]. It can easily
be verified (by a straightforward formula induction) that with this definition we
obtain () = [¢] for all formulas v/ that use variables from the set ¢. But then by
our assumption on ¢ we find that

i) =[o] #[T] =1,

as required.

For the other direction we have to work a bit harder. If F- ¢ then it is obvious
that 7(¢) = [¢] = [T] = 1, but only looking at ¢ is not sufficient now. We have to
show that (¢) = [T] for all assignments 6.

So let f be an arbitrary assignment. That is, 6 assigns an equivalence class
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(under =¢) to each propositional variable. For each variable p, take a representing
formula p(p) in the equivalence class #(p); that is, we have 6(p) = [p(p)]. We may
view p as a function mapping propositional variables to formulas; in other words,
p is a substitution. Let p(1)) denote the effect of performing this substitution on the
formula 1. It can be proved by an easy formula induction that, for any formula ,
we have

(1) = [p(¥)]. (5.11)

Now, the collection of propositional theorems is closed under uniform substitution
(depending on the formulation of your favorite sound and complete proof system,
this is either something that is hardwired in or can be shown to hold). This closure
property implies that the formula p(¢) is a theorem, and hence that p(¢) == T, or
equivalently, [p(¢)] = [T]. But then it follows from (5.11) that

6(¢) = [T],
which is precisely what we need to show that £-(®) = ¢. -
Thus it only remains to check that £-(®) is the right kind of algebra.

Proposition 5.15 For any set ® of proposition letters, £o(®P) is a boolean algebra.

Proof. Fix a set @. The proof of this Proposition boils down to proving that all the
identities BO—4 hold in £o(®). In (5.9) above we proved that the first part of B3
holds; we leave the reader to verify that the other identities hold as well.

Summarizing, we have seen that the axiomatics of propositional logic can be al-
gebraized in a class of algebras, namely the variety of boolean algebras. We have
also seen that Lindenbaum-Tarski algebras act as canonical representatives of the
class of boolean algebras. (For readers with some background in universal algebra,
we remark that Lindenbaum-Tarski algebras are in fact the free boolean algebras.)

Weak completeness via Stone

It’s time to put our findings together, and to take one final step. This step is more
important than any taken so far.
Theorem 5.9 captured tautologies as equations valid in set algebras:

e ¢iffSet = ¢~ T.

On the other hand, in Theorem 5.11 we found an algebraic semantics for the notion
of classical theoremhood:

Fo ¢iff BAE ¢ ~ T,

But there is a fundamental Jogical connection between = and ¢ the soundness
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and completeness theorem for propositional logic tells us that they are identical.
Does this crucial connection show up algebraically? That is, is there an algebraic
analog of the soundness and completeness result for classical propositional logic?
There is: it’s called the Stone Representation Theorem.

Theorem 5.16 (Stone Representation Theorem) Any boolean algebra is iso-
morphic to a set algebra.

Proof. We will make a more detailed statement of this result, and prove it, in Sec-
tion 5.3. -

(Incidentally, this immediately tells us that any boolean algebra is isomorphic to a
subalgebra of a power of 2 — for Proposition 5.8 tells us that any power set algebra
is isomorphic to a subalgebra of a power of 2.) But what really interests us here
is the logical content of Stone’s Theorem. In essence, it is the key to the weak
completeness of classical propositional logic.

Corollary 5.17 (Soundness and Weak Completeness) For any formula ¢, ¢ is
valid iff it is a theorem.

Proof. Immediate from the equations above, since by the Stone Representation
Theorem, the equations valid in Set must coincide with those valid in BA.

The relation between Theorem 5.11 and Corollary 5.17 is the key to much of our
later work. Note that from a logical perspective, Corollary 5.17 is the interesting re-
sult: it establishes the soundness and completeness of classical propositional logic
with respect to the standard semantics. So why is Theorem 5.11 important? After
all, as it proves completeness with respect to an abstractly defined class of boolean
algebras, it doesn’t have the same independent logical interest. This is true, but
given that the abstract algebraic counterexamples it provides can be represented as
standard counterexamples — and this is precisely what Stone’s theorem guarantees
— it enables us to prove the standard completeness result for propositional logic.

To put it another way, the algebraic approach to completeness factors the algebra
building process into two steps. We first prove completeness with respect to an
abstract algebraic semantics by building an abstract algebraic model. It’s easy to
do this — we just use Lindenbaum-Tarski algebras. We then try and represent the
abstract algebras in the concrete form required by the standard semantics.

In the next two sections we extend this approach to modal logic. Algebraizing
modal logic is more demanding than algebraizing propositional logic. For a start,
there isn’t just one logic to deal with — we want to be able to handle any normal
modal logic whatsoever. Moreover, the standard semantics for modal logic is given
in terms of frame-based models — so we are going to need a representation result
that tells us how to represent algebras as relational structures.
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But all this can be done. In the following section we’ll generalize boolean al-
gebras to boolean algebras with operators; these are the abstract algebras we will
be dealing with throughout the chapter. We also generalize set algebras to com-
plex algebras; these are the concrete algebras which model the idea of set-based
algebras of propositions for modal languages. We then define the Lindenbaum-
Tarski algebras we need — and every normal modal logic will give rise to its own
Lindenbaum-Tarski algebra. This is all a fairly straightforward extension of ideas
we have just discussed. We then turn, in Section 5.3, to the crucial representation
result: the Jonsson-Tarski Theorem. This is an extension of Stone’s Representa-
tion Theorem that tells us how to represent a boolean algebra with operators as an
ordinary modal model. It is an elegant result in its own right, but for our purposes
its importance is the bridge it provides between completeness in the universe of
algebras and completeness in the universe of relational structures.

Exercises for Section 5.1

5.1.1 Let A and B be two sets, and f : A — B some map. Show that f ! : P(B) —
P(A) givenby f1(Y) = {a € A | f(a) € Y} is a homomorphism from the power set
algebra of B to that of A.

5.1.2 Prove that every power set algebra is isomorphic to a power of the algebra 2, and
that conversely, every power of 2 is isomorphic to a power set algebra.

5.1.3 Here’s a standard set of axioms for propositional calculus: p — (¢ — p), (p —
(g—=7)—=>({(p—q — (p—r)),and (-p = —¢) — (¢ — p). Show that all three
axioms are valid on any set algebra. That is, show that whatever subset is used to interpret
the propositional variables, these formulas are true in all worlds. Furthermore, show that
modus ponens and uniform substitution preserve validity.

5.1.4 Let @ and ¥ be two sets of proposition letters.

(a) Prove that Form(P) is a subalgebra of Form(¥) iff & C &.
(b) Prove that £(P) can be embedded in L (V) iff |$| < |¥|.
(c) Prove that £c(®P) and £ (¥) are isomorphic iff |$| = |¥|.
(d) Does @ C ¥ imply that £-(P) is a subalgebra of £ (¥)?

5.2 Algebraizing Modal Logic

Let’s adapt the ideas introduced in the previous section to modal logic. The most
basic principle of algebraic logic is that formulas of a logical language can be
viewed as terms of an algebraic language, so let’s first get clear about the algebraic
languages we will use in the remainder of this chapter:

Definition 5.18 Let 7 be a modal similarity type. The corresponding algebraic
similarity type F, contains as function symbols all modal operators, together with
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the boolean symbols V (binary), — (unary), and L (constant). For a set @ of vari-
ables, we let Ter,(®) denote the collection of F;-terms over &.

The algebraic similarity type F; can be seen as the union of the modal similarity
type 7 and the boolean type Bool. In practice we often identify 7 and -, speaking
of 7-terms instead of JF,-terms. The previous definition takes the formulas-as-
terms paradigm quite literally: by our definitions

Form(r,®) = Ter.(P).

Just as boolean algebras were the key to the algebraization of classical proposi-
tional logic, in modal logic we are interested in boolean algebras with operators
or BAOs. Let’s first define BAOs abstractly; we’ll discuss concrete BAOs shortly.

Definition 5.19 (Boolean Algebras with Operators) Let 7 be a modal similarity
type. A boolean algebra with T-operators is an algebra

2= (A7+7_707fA)A€T

such that (A, +,—.,0) is a boolean algebra and every f, is an operator of arity
p(A); that is, f, is an operation satisfying

(Normality) fa(a1,...,ays)) =0 whenever a; = 0 for some i (0 < i < p(a)).
(Additivity) For all i (such that 0 < i < p(A)),

falar, ..., a —i—a;,...,ap(A)) =
fA(al, RN PR ,ap(A)) + fA(al, R ,a;, R ,ap(A)).
If we abstract from the particular modal similarity type 7, or if 7 is known from

context, we simply speak of boolean algebras with operators, or BAOs.

Now, the boolean structure is obviously there to handle the propositional connec-
tives, but what is the meaning of the normality and additivity conditions on the f,?
Consider a unary operator f. In this case these conditions boil down to:

f(0) =0
fle+y) = fotfy.
But these equations correspond to the following modal formulas:
L & L
OV & OpVOq
both of which formulas are modal validities. Indeed (as we noted in Remark 4.7)
they can be even be used to axiomatize the minimal normal logic K. Thus, even

at this stage, it should be clear that our algebraic operators are well named: their
defining properties are modally crucial.
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Furthermore, note that all operators have the property of monotonicity. An oper-
ation g on a boolean algebra is monotonic if a < b implies ga < gb. (Here < refers
to the ordering on boolean algebra given in Definition 5.10: ¢ < biffa-b = a
iff a + b = b.) Operators are monotonic, because if a < b, then a + b = b, so
fa+ fb = f(a+0b) = fb,and so fa < fb. Once again there is an obvious
modal analog, namely the rule of proof mentioned in Remark 4.7: if 4y p — ¢
then -4 Op — <q.

Example 5.20 Consider the collection of binary relations over a given set U. This
collection forms a set algebra on which we can define the operations | (compo-
sition), (+)~! (inverse) and Id (the identity relation); these are binary, unary and
nullary operations respectively. It is easy to verify that these operations are actu-
ally operators; to give a taste of the kind of argumentation required, we show that
composition is additive in its second argument:

(2,9) € R| (SUT)
iff there is a z with (z,2) € Rand (z,y) € SUT
iff thereisa z with (x,2) € Rand (z,y) € Sor (z,y) € T
iff thereisa z with (x,2) € Rand (z,y) € S,
or there is a z with (z,2) € Rand (z,y) € T
iff (z,y)€R|S or (z,y) ER|T
iff (z,y) e R|SUR|T.

Y
Y

The reader should check the remaining cases. -

Algebraizing modal semantics

However it is the next type of BAO that is destined to play the starring role:

Definition 5.21 (Complex Algebras) Given an (n + 1)-ary relation R on a set
W, we define the n-ary operation mp on subsets of W by

mpr(Xi,...,Xp) ={w e W | Rww; ... w, forsome w; € X;,...,w, € X,,}

Now let 7 be a modal similarity type, and § = (W, Ry)aer a 7-frame. The (full)
complex algebra of § (notation: FT), is the extension of the power set algebra
PB(W) with operations mp, for every operator A in 7. A complex algebra is a
subalgebra of a full complex algebra. If K is a class of frames, then we denote the
class of full complex algebras of frames in K by CmK. -

It is important that you fully understand this definition. For a start, note that com-
plex algebras are set algebras (that is, concrete propositional algebras) to which
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mp operations have been added. What are these mp? Actually, we’ve met them
before: they were defined in Definition 1.30. There we mentioned that for a binary
relation R, the unary operation mp, yields the set of all states which ‘see’ a state in
a given subset X of the universe:

mp(X) ={y € W | there is an # € X such that Ryx}.

Given an n-tuple of subsets of the universe, the n-ary operation mp, returns the set
of all states which ‘see’ an n-tuple of states each of which belongs to the corre-
sponding subset. It easily follows that if we have some model in mind and denote
with V() the set of states where ¢ is true, then

MR, (‘7(¢17 oo 7¢n)) = V(A(¢1v oo >¢n))

Thus it should be clear that complex algebras are intrinsically modal. In the previ-
ous section we said that set algebras model propositions as sets of possible worlds.
By adding the mp, we’ve modeled the idea that one world may be able to access
the information in another. In short, we’ve defined a class of concrete algebras
which capture the modal notion of access between states in a natural way.

How are complex algebras connected with abstract BAOs? One link is obvious:

Proposition 5.22 Let 7 be a modal similarity type, and § = (W, Ry)per a 7-
frame. Then § is a boolean algebra with T-operators.

Proof. We have to show that operations of the form mp are normal and additive.
This rather easy proof is left to the reader; see Exercise 5.2.2.

The other link is deeper. As we will learn in the following section (Theorem 5.43),
complex algebras are to BAOs what set algebras are to boolean algebras: every
abstract boolean algebra with operators has a concrete set theoretic representation,
for every boolean algebra with operators is isomorphic to a complex algebra.

But we have a lot to do before we are ready to prove this — let us continue our
algebraization of the semantics of modal logic. We will now define the interpreta-
tion of 7-terms and equations in arbitrary boolean algebras with 7-operators. As
we saw for propositional logic, the basic idea is very simple: given an assignment
that tells us what the variables stand for, we can inductively define the meaning of
any term.

Definition 5.23 Assume that 7 is a modal similarity type and that @ is a set of
variables. Assume further that % = (A, 4+, —,0, fo)acr is @ boolean algebra with
T-operators. An assignment for @ is a function § : & — A. We can extend ¢
uniquely to a meaning function 0: Ter, (®) — A satisfying:

6(p) = 6(p), forallp € &
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(L) = 0

0(—s) —0(s)

O(sVt) = 6(s)+0(t)
O(B(s1,--15n) = fal0(s1),...,0(sn)).

Now let s ~ ¢ be a 7-equation. We say that s ~ ¢ is frue in 2 (notation: 2 Es=t)
if for every assignment 0: 0(s) = 6(t). -

But now consider what happens when 2 is a complex algebra . Since elements
of T are subsets of the power set P(W) of the universe W of §, assignments 6 are
simply ordinary modal valuations! The ramifications of this observation are listed
in the following proposition:

Proposition 5.24 Let 7 be a modal similarity type, ¢ a T-formula, § a T-frame, 0
an assignment (or valuation) and w a point in §. Then

(3.0),wlk¢ iff wei(o), (5.12)
ko iff FTEO=T, (5.13)
StEomv iff FIFoe . (5.14)

Proof. We will only prove the first part of the proposition (for the basic modal
similarity type); the second and third part follow immediately from this and the
definitions.

Let ¢, § and 6 be as in the statement of the theorem. We will prove (5.12) (for
all w) by induction on the complexity of ¢. The only interesting part is the modal
case of the inductive step. Assume that v is of the form &y. The key observation
is that

0(0¢) = mp, (6(¢)). (5.15)
We now have:

(§,0),wIF <&y iff  there is a v such that Rowv and (§,60),v
iff  there is a v such that Rowv and v € (y )
iff  w e mp(f(y))
iff  w e f(oy).

Here the second equivalence is by the inductive hypothesis, and the last one by
(5.15). This proves (5.12). -

The previous proposition is easily lifted to the level of classes of frames and com-
plex algebras. The resulting theorem is a fundamental one: it tells us that classes
of complex algebras algebraize modal semantics. It is the modal analog of Theo-
rem 5.9.
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Theorem 5.25 Let T be a modal similarity type, ¢ and 1) T-formulas, § a T-frame,
0 an assignment (or valuation) and w a point in §. Then

KIF¢ iff CmKEo~T, (5.16)
CoK o~ iff KIF¢ < . (5.17)

Proof. Immediate by Proposition 5.24. -

This proposition allows us to identify the modal logic /A of a class of frames K
(that is, the set of formulas that are valid in each § € K}) with the equational
theory of the class CmK of complex algebras of frames in K (that is, the set of
equations {s ~ t | §T = s ~ t, forall § € K}).

Let us summarize what we learned so far. We have developed an algebraic
approach to the semantics of modal logic in terms of complex algebras. These
complex algebras, concrete boolean algebras with operators, generalize to modal
languages the idea of algebras of propositions provided by set algebras. And most
important of all, we have learned that complex algebras embody all the information
about normal modal logics that frames do. Thus, mathematically speaking, we can
dispense with frames and instead work with complex algebras.

Algebraizing modal axiomatics

Turning to the algebraization of modal axiomatics, we encounter a situation similar
to that of the previous section. Once again, we will see that the algebraic counter-
part of a logic is an equational class of algebras. To give a precise formulation we
need the following definition.

Definition 5.26 Given a formula ¢, let ¢™ be the equation ¢ ~ T. Now let 7 be a
modal similarity type. For a set X' of 7-formulas, we define Vx to be the class of
those boolean algebras with 7-operators in which the set ¥ = {0¥ | 0 € Y} is
valid. -

We now state the algebraic completeness proof we wish to prove. It is the modal
analog of Theorem 5.11.

Theorem 5.27 (Algebraic Completeness) Let 7 be a modal similarity type, and
X a set of T-formulas. Then KX (the normal modal T-logic axiomatized by X)) is
sound and complete with respect to V's.. That is, for all formulas ¢ we have

F.x ¢ iff Vs | ¢~

Proof. We leave the soundness direction as an exercise to the reader. Completeness
is an immediate corollary of Theorems 5.32 and 5.33 below.



282 5 Algebras and General Frames

As a corollary to the soundness direction of Theorem 5.27, we have that ik » =
Vy, for any set X of formulas. In the sequel this will allow us to forget about
axiom sets and work with logics instead.

To prove the completeness direction of Theorem 5.27, we need a modal version
of the basic tool used to prove algebraic completeness results: Lindenbaum-Tarski
algebras. As in the the case of propositional languages, we will build an algebra on
top of the set of formulas in such a way that the relation of provable equivalence
between two formulas is a congruence relation. The key difference is that we don’t
have just one relation of provable equivalence, but many: we want to define the
notion of Lindenbaum-Tarski algebras for arbitrary normal modal logics.

Definition 5.28 Let 7 be an algebraic similarity type, and ¢ a set of proposi-
tional variables. The formula algebra of 7 over @ is the algebra Form(r,P) =
(Form(7,®),+,—, L, fa)aer where 4+, — and L are given as in Definition 5.3,
while for each modal operator, the operation f, is given by

Falttyeoitn) = Aty ... tn).

Notice the double role of A in this definition: on the right hand side of the equation,
A is a ‘static’ part of the term A(ty,...,t,), whereas in the left hand side we have
a more ‘dynamic’ perspective on the interpretation f, of the operation symbol A.

Definition 5.29 Let 7 be a modal similarity type, ¢ a set of propositional variables,
and A a normal modal 7-logic. We define =4 as a binary relation between 7-
formulas (in @) by

=4 Viff Fy b .

If ¢ =4 ¢, we say that ¢ and 1 are equivalent modulo A. -

Proposition 5.30 Let 7 be a modal similarity type, @ a set of proposition letters
and A a normal modal T-logic. Then =, is a congruence relation on Form(7, D).

Proof. We confine ourselves to proving the proposition for the basic modal simi-
larity type. First, we have to show that =4 is an equivalence relation; this is easy,
and we leave the details to the reader. Next, we must show that =, is a congruence
relation on the formula algebra; that is, we have to demonstrate that =4 has the
following properties:

®o =a o and ¢y =41 imply gV o1 =4 Po V U1
=41 implies —p =4 —) (5.18)
¢ =41 implies O =4 O

The first two properties are easy exercises in propositional logic. The third is an
immediate corollary of Lemma 4.6.



5.2 Algebraizing Modal Logic 283

Proposition 5.30 tells us that the following are correct definitions of functions on
the set Form (7, ®)/=4 of equivalence classes under =4:

[¢] +[¢] = [pV Y]
—[¢] = [~¢] (5.19)
fA([¢1]7"'7[¢n]> = [A(¢17~-~a¢n)]

For unary diamonds, the last clause boils down to: fo[¢] := [C¢].

Given Proposition 5.30, the way is open to define the Lindenbaum-Tarski algebra
for any normal modal logic A: we simply define it to be the quotient algebra of the
formula algebra over the congruence relation =4.

Definition 5.31 (Lindenbaum-Tarski Algebras) Let 7 be a modal similarity
type, @ a set of propositional variables, and A a normal modal 7-logic in this lan-
guage. The Lindenbaum-Tarski algebra of A over the set of generators @ is the
structure

’Q‘A(@) = (FO’I”m(T, @)/E/h +a ) fA)a
where the operations +, —, and f, are defined as in (5.19). -

As with propositional logic, we need two results about Lindenbaum-Tarski alge-
bras. First, we must show that modal Lindenbaum-Tarski algebras are boolean
algebras with operators; indeed, we need to show that the Lindenbaum-Tarski al-
gebra of any normal modal logic A belongs to V4. Second, we need to prove that
Lindenbaum-Tarski algebras provide canonical counterexamples to the validity of
non-theorems of A in V4. The second point is easily dealt with:

Theorem 5.32 Let T be a modal similarity type, and A a normal modal T-logic.
Let ¢ be some propositional formula, and @ a set of proposition letters of size not
smaller than the number of proposition letters occurring in ¢. Then

Fa @ iff LA(P) = 67 (5.20)

Proof. This proof is completely analogous to that of Proposition 5.14 and is left to
the reader.

So let’s verify that Lindenbaum-Tarski algebras are canonical algebraic models of
the right kind:

Theorem 5.33 Let 7 be a modal similarity type, and A be a normal modal T-logic.
Then for any set @ of proposition letters, £4(P) belongs to V 4.

Proof. Once we have shown that £, (&) is a boolean algebra with T-operators, the
theorem immediately follows from Theorem 5.32. Now, that £4(®) is a boolean
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algebra is clear, so the only thing that remains to be done is to show that the modal-
ities really give rise to T-operators.

As an example, assume that 7 contains a diamond <; let us prove additivity of
fo. We have to show that

fola+0b) = foa+ fob,

for arbitrary elements a and b of £4(®). Let a and b be such elements; by definition
there are formulas ¢ and 1 such that a = [¢] and b = [¢)]. Then

fola+b) = fo([g] + [¢]) = follo VY]) = [O(oV ¥)]

while

foa+ fob= fo([9]) + fo([¥]) = [O9] + [OY] = [Oo V Oyl.
It is easy to check that

Fa O(@VY) & (0o V Op),

whence it follows that [O(¢ V )] = [C¢ V O1p]. We leave it for the reader to fill
in the remaining details of this proof as Exercise 5.2.4. -

As an immediate corollary we have the following result: modal logics are always
complete with respect to the variety of boolean algebras with operators where their
axioms are valid. This is in sharp contrast to the situation in relational semantics,
where (as we saw in Chapter 4) modal logics need not be complete with respect to
the class of frames that they define.

This is an interesting result, but it’s not what we really want, for it proves com-
pleteness with respect to abstract BAOs rather than complex algebras. Not only are
complex algebras concrete algebras of propositions, we also know (recall Proposi-
tion 5.24) that complex algebras embody all the information of relevance to frame
validity — so we really should be aiming for completeness results with respect to
classes of complex algebras.

And that’s why the long-promised Jonsson-Tarski theorem, which we state and
prove in the following section, is so important. This tells us that every boolean
algebra with operators is isomorphic to a complex algebra, and thus guarantees that
we can represent the Lindenbaum-Tarski algebras of any normal modal logics /A
as a complex algebra. In effect, it will convert Theorem 5.32 into a completeness
result with respect to complex algebras. Moreover, because of the link between
complex algebras and relational semantics, it will open the door to exploring frame
completeness algebraically.

Exercises for Section 5.2
5.2.1 Let %2 be a boolean algebra. Prove that - is an operator. How about +?
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5.2.2 Show that every complex algebra is a boolean algebra with operators (that is, prove
Proposition 5.22).

5.2.3 Let A be the collection of finite and co-finite subsets of N. Define f : A — A by

fx) = { eNIy+1eX} if Xis finite,
1 N if X is cofinite.

Prove that (A, U, —, &, f) is a boolean algebra with operators.

5.2.4 Let A be a normal modal logic. Prove that the Lindenbaum-Tarski algebra £ 4 is a
boolean algebra with 7-operators (that is, fill in the missing proof details in Theorem 5.33).

5.2.5 Let X be a set of 7-formulas. Prove that for any formula ¢, -k, & ¢ implies sfVy |=
¢~. That is, prove the soundness direction of Theorem 5.27.

5.2.6 Call a variety V of BAOs complete if it is generated by a class of complex algebras,
i.e., if V = HSPCmK for some frame class K. Prove that a logic A is complete iff the
variety V 4 is complete.

5.2.7 Let 2 be a boolean algebra. In this exercise we assume familiarity with the notion
of an infinite sum (supremum). An operation f : A — A is called completely additive if it
distributes over infinite sums (in each of its arguments).

(a) Show that every operation of the form m g is completely additive.
(b) Give an example of an operation that is additive, but not completely additive. (Hint:
as the boolean algebra, take the set of finite and co-finite subsets of some frame.)

5.3 The Jonsson-Tarski Theorem

We already know how to construct a BAO from a frame: simply form the frame’s
complex algebra. We will now learn how to construct a frame from a BAO by form-
ing the ultrafilter frame of the algebra. As we will see, this operation generalizes
two constructions that we have met before: taking the ultrafilter extension of a
model, and forming the canonical frame associated with a normal modal logic.

Our new construction will lead us to the desired representation theorem: by tak-
ing the complex algebra of the ultrafilter frame of a BAO, we obtain the canonical
embedding algebra of the original BAO. The fundamental result of this section (and
indeed, of the entire chapter) is that every boolean algebra with operators can be
isomorphically embedded in its canonical embedding algebra. We will prove this
result and along the way discuss a number of other important issues, such as the
algebraic status of canonical models and ultrafilter extensions, and the importance
of canonical varieties of BAOs for modal completeness theory.

Let us consider the problem of (isomorphically) embedding an arbitrary BAO
2 in a complex algebra. Obviously, the first question to ask is: what should the
underlying frame of the complex algebra be? To keep our notation simple, let
us assume for the moment that we are working in a similarity type with just one
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unary modality, and that 2 = (A, +, —,0, f) is a boolean algebra with one unary
operator f. Thus we have to find a universe W and a binary relation R on W
such that 2 can be embedded in the complex algebra of the frame (W, R). Stone’s
Representation Theorem 5.16 gives us half the answer, for it tells us how to embed
the boolean part of 2 in the power set algebra of the set Uf2A of ultrafilters of 2.
Let’s take a closer look at this fundamental result.

Stone’s representation theorem

We have already met filters and ultrafilters in Chapter 2, when we defined the ul-
trafilter extension of a model. Now we generalize these notions to the context of
abstract boolean algebras.

Definition 5.34 A filter of a boolean algebra 2l = (A, +, —,0) isasubset ' C A
satisfying

(F1) 1eF

(F2) F is closed under taking meets; that is, if a,b € F' thena -b € F

(F3) F'isupward closed; that is, ifa € F'anda < bthen b € F.

A filter is proper if it does not contain the smallest element 0, or, equivalently, if
F # A. An ultrafilter is a proper filter satisfying

(F4) Forevery a € A, either a or —a belongs to F'.
The collection of ultrafilters of 2 is called Uf2A.

Note the difference in terminology: an (ultra)filter over the set W is an (ultra)filter
of the power set algebra B(W).

Example 5.35 For any element a of a boolean algebra B, the set at = {b € a |
a < b} is afilter. In the field of finite and co-finite subsets of a countable set A, the
collection of co-finite subsets of A forms an u/trafilter.

Example 5.36 Since the collection of filters of a boolean algebra is closed under
taking intersections, we may speak of the smallest filter Fp containing a given set
D C A. This filter can also be defined as the following set:

{a € A| thereare dy,...,d, € Dsuchthatd; -...-d, < a} (5.21)

which explains why we will also refer to Fp as the filter generated by D. This
filter is proper if D has the so-called finite meet property; that is, if there is no finite
subset {dp, ...,d,} of Dsuchthatd; -...-d, =0. -

For future reference, we gather some properties of ultrafilters; the proof of the next
proposition is left to the reader.
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Proposition 5.37 Let A = (A, +, —,0) be a boolean algebra. Then

(1) For any ultrafilter u of 2 and for every pair of elements a,b € A we have
thata +b € uiffa € uorb € u.

(1) Uf2A coincides with the set of maximal proper filters on A (‘maximal’ is
understood with respect to set inclusion).

The main result that we need in the proof of Stone’s Theorem is the Ultrafilter
Theorem: this guarantees that there are enough ultrafilters for our purposes.

Proposition 5.38 (Ultrafilter Theorem) Let A be a boolean algebra, a an ele-
ment of A, and F a proper filter of U that does not contain a. Then there is an
ultrafilter extending F that does not contain a.

Proof. We first prove that every proper filter can be extended to an ultrafilter. Let
G be a proper filter of 2, and consider the set X of all proper filters H extending
G. Suppose that Y is a chain in X; that is, Y is a nonempty subset of X of which
the elements are pairwise ordered by set inclusion. We leave it to the reader to
verify that | J Y is a proper filter; obviously, | J Y extends G; so |JY belongs to X
itself. This shows that X is closed under taking unions of chains, whence it follows
from Zorn’s Lemma that X contains a maximal element u. We claim that « is an
ultrafilter.

For suppose otherwise. Then there is a b € A such that neither b nor —b belongs
to u. Consider the filters H and H’ generated by uU{b} and uU{—b}, respectively.
Since neither of these can belong to X, both must be improper; that is, 0 € H and
0 € H'. But then by definition there are elements uj, . .. , up, u}, ..., u,, in u such
that

Upe.cup b <0 and Uy -...oul, - —b<0.
From this it easily follows that
! !
UL v Up = U~ eee s Uy, =0,

contradicting the fact that « is a proper filter.

Now suppose that @ and F' are as in the statement of the proposition. It is not
hard to show that F'U {—a} is a set with the finite meet property. In Example 5.36
we saw that there is a proper filter G extending F' and containing —a. Now we use
the first part of the proof to find an ultrafilter u extending G. But if u extends G it
also extends F', and if it contains —a it cannot contain a.

It follows from Proposition 5.38 and the facts mentioned in Example 5.36 that any
subset of a boolean algebra can be extended to an ultrafilter provided that it has
the finite meet property. We now have all the necessary material to prove Stone’s
Theorem.
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Theorem 5.16 (Stone Representation Theorem) Any boolean algebra is isomor-
phic to afield of sets, and hence, to a subalgebra of a power of 2. As a consequence,
the variety of boolean algebras is generated by the algebra 2:

BA = V({2}).

Proof. Fix a boolean algebra 2 = (A, +, —,0). We will embed 2l in the power set
of Uf2. Consider the map p : A — P(Uf) defined as follows:

pla) = {ue UfA|a€ u}.
We first show that p is a homomorphism. As an example we treat the join operation:

pla+b) = {ueUfA|la+beu}

= {ueUfd|acuorbeu}

= {ueUfd|aculU{uec UA|becu}
pla) U p(b).

Note that the crucial second equality follows from Proposition 5.37.

It remains to prove that p is injective. Suppose that a and b are distinct elements
of A. We may derive from this that either a £ b or b £ a. Without loss of
generality we may assume the second. But if b £ a then a does not belong to the
filter b1 generated by {b}, so by Proposition 5.38 there is some ultrafilter u such
that b1 C u and a € u. Obviously, b7 C u implies that b € u. But then we have
that u € p(b) and u & p(a)

This shows that 2 is isomorphic to a field of sets; it then follows by Propo-
sition 5.8 that 2( is isomorphic to a subalgebra of a power of 2. From this it is
immediate that BA is the variety generated by the algebra 2. -

Remark 5.39 That every boolean algebra is isomorphic to a subalgebra of a power
of the algebra 2 can be proved more directly by observing that there is a 1-1 cor-
respondence between ultrafilters of 2( and homomorphisms from 2l onto 2. Given
an ultrafilter u of 2, define oy, : |} — 2 by

a(a) = 1 ifa€u
U1 0 otherwise

And conversely, given a homomorphism « : 2 — 2, define the ultrafilter u, by
U = a (1) (= {a €A|ala) =1}).

We leave further details to the reader. -
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Ultrafilter frames

Now that we have a candidate for the universe of the ultrafilter frame of a given
BAO %, let us see how to define a relation R on ultrafilters such that we can embed
2 in the algebra (Uf2A, R)*. To motivate the definition of R, we will view the
elements of the algebra as propositions, and imagine that (a) (the representation
map 7 applied to proposition a) yields the set of states where a is true according
to some valuation. Hence, reading fa as <a, it seems natural that a state « should
be in r(fa) if and only if there is a v with Ruv and v € r(a). So, in order to
decide whether Ruv should hold for two arbitrary states (ultrafilters) « and v, we
should look at all the propositions a holding at v (that is, all elements a € v) and
check whether fa holds at u (that is, whether fa € w). Putting it more formally,
the natural, ‘canonical’ choice for R seems to be the relation ()y given by

Qyuv iff fa € u forall a € v.

The reader should compare this definition with the definition of the canonical re-
lation given in Definition 4.18. Although one is couched in terms of ultrafilters,
and the other in terms of maximal consistent sets (MCSs), both clearly trade on the
same idea. As we will shortly learn (and as the above identification of ‘ultrafilters’
and ‘maximal sets of propositions’ already suggests), this is no accident.

In the general case, we use the following definition (an obvious analog of Defi-
nition 4.24).

Definition 5.40 Let2 = (A, +, —,0, fo)acr be a boolean algebra with operators.
The (n + 1)-ary relation () on the set Uf< of ultrafilters of 2 is given by

Qruuy ... uy iff f(ai,...,a,) €u foralla; € uy,...,a, € uy

The frame (Uf2A, Qy, ) acr is called the uitrafilter frame of 2 (notation: 2L, ). The
complex algebra (20, )7 is called the (canonical) embedding algebra of 2 (nota-
tion: EmA).

We leave it to the reader to verify that the wultrafilter extension ue§ of a frame
$ is nothing but the ultrafilter frame of the complex algebra of §, in symbols:
ue§ = (¥ +)+-

For later reference, we state the following proposition (an obvious analog of
Lemma 4.25) which shows that we could have given an alternative but equivalent
definition of the relation Q.

Proposition 5.41 Let f be an n-ary operator on the boolean algebra 2, and u,
Uy, ..., Uy an (n + 1)-tuple of ultrafilters of A. Then

Qruuy ... uy iff — f(—a1,...,—ay) € u implies that for some i, a; € u;.
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Proof. We only prove the direction from left to right. Suppose that Qruu; . . . uy,

and that — f(—aq, ..., —a,) € u. To arrive at a contradiction, suppose that there is
no ¢ such that ¢; € ;. Butas Q juu; ... uy, it follows that f(—ay,...,—ay) € w.
But this contradicts the fact that — f(—ay, ..., —a,) € u. -

As the above sequence of analogous definitions and results suggest, we have al-
ready encountered a kind of frame which is very much like an ultrafilter frame,
namely the canonical frame of a normal modal logic (see Definition 4.18). The
basic idea should be clear now: the states of the canonical frame are the MCSs
of the logic, and an ultrafilter is nothing but an abstract version of an MCS. But
this is no mere analogy: the canonical frame of a logic is actually isomorphic to
the ultrafilter frame of its Lindenbaum-Tarski algebra, and the mapping involved
is simple and intuitive. When making this connection, the reader should keep in
mind that when we defined ‘the’ canonical frame in Chapter 4, we always had a
fixed, countable set @ of proposition letters in mind.

Theorem 5.42 Let T be a modal similarity type, A a normal modal T-logic, and ®
the set of propositional variables used to define the canonical frame §'. Then

F4 = (L24(D)) 4
Proof. We leave it to the reader to show that the function § defined by
o) ={[¢] | 6 € I'},

mapping a maximal /-consistent set I” to the set of equivalence classes of its mem-
bers, is the required isomorphism between § and (£4(®));. -

The Jonsson-Tarski Theorem

We are ready to prove the Jonsson-Tarski Theorem: every boolean algebra with
operators is embeddable in the full complex algebra of its ultrafilter frame.

Theorem 5.43 (Jonsson-Tarski Theorem) Let T be a modal similarity type, and
A = (A, +,—,0, fa)aer be a boolean algebra with T-operators. Then the repre-
sentation function r : A — P(Uf2U)) given by

r(a) ={u € UfA|a € u}
is an embedding of A into Em.

Proof. To simplify our notation a bit, we work in a similarity type with a single
n-ary modal operator, assuming that 2 = (A, +, —, 0, f) is a boolean algebra with
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a single n-ary operator f. By Stone’s Representation Theorem, the map r : A —
P(Uf(2A)) given by

r(z) ={ue Uf(A) |z €u}

is a boolean embedding. So, it suffices to show that r is also a modal homomor-
phism; that is, that

r(f(ai,...,an)) = mq,(r(a),...,r(an)). (5.22)

We will first prove (5.22) for unary f. In other words, we have to prove that

r(fa) =mq,(r(a)).

We start with the inclusion from right to left: assume u € mg,(r(a)). Then by
definition of mg,, there is an ultrafilter u; with u; € r(a) (that is, a € u;) and
Q yuuy. By definition of )y this implies fa € u, or u € r(fa).

For the other inclusion, let u be an ultrafilter in r(fa), that is, fa € u. To
prove that u € mgq, (r(a)), it suffices to find an ultrafilter w; such that Qyuu; and
uy € r(a), or a € uy. The basic idea of the proof is that we first pick out those
elements of A (other than a) that we cannot avoid putting in v . These elements are
given by the condition Qyuu;. By Proposition 5.41 we have that for every element
of the form — f(—y) in u, y has to be in vy ; therefore, we define

F:={yeAl-f(-y) €u}.

We will now show that there is an ultrafilter v; O F' containing a. First, an easy
proof (using the additivity of f), shows that F' is closed under taking meets. Sec-
ond, we prove that

Fli={a-y|lyeF}

has the finite meet property. As F' is closed under taking meets, it is sufficient to
show that a - y # 0 whenever y € F. To arrive at a contradiction, suppose that
a-y = 0. Then a < —y, so by the monotonicity of f, fa < f(—y); therefore,
f(=y) € u, contradicting y € F.

By Theorem 5.38 there is an ultrafilter v; O F’. Note that a € uj, as 1 € F.
Finally, Q fuu; holds by definition of F': if —f(—y) € utheny € F' C .

We now prove (5.22) for arbitrary n > 1 by induction on the arity n of f. We
have just proved the base case. So, assume that the induction hypothesis holds for
n. We only treat the direction from left to right, since the other direction can be
proved as in the base case. Let f be a normal and additive function of rank n + 1,
and suppose that ay, ..., a,+1 are elements of 2 such that f(ay,...,a,41) € u.
We have to find ultrafilters uy, ..., up41 of 2 such that (i) a; € w; for all ¢ with
1 <i<n+1,and (ii) Qpuug ... u,y1. Our strategy will be to let the induction
hypothesis take care of uy, ..., u, and then to search for wuy,1.
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Let f/ : A™ — A be the function given by

oy, ..o ) = f(x1, ..y, any).

That is, for the time being we fix a,,11. It is easy to see that f’ is normal and
additive, so we may apply the induction hypothesis. Since f'(a1,...,a,) € u, this
yields ultrafilters uy, ..., u, such that a; € u; for all s with 1 < ¢ < n, and

flxy,. .., xpn,ant1) € u, whenever z; € u; (1 <i < n). (5.23)

Now we’ll define an ultrafilter w1 such that a1 € up41 and Qpuuy ... wp 1.
This second condition can be rewritten as follows (we abbreviate ‘x € uq, ...,
Ty € up by ‘% € W)

Qruuy ... Upy1
iff forall 7,y: if ¥ € @, then y € wu,,1 implies f(Z,y) € u
iff forall ¥, y: if ¥ € 4, then f(¥,y) & u implies y & wp+1
iff forall 7, y: if ¥ € i, then — f(Z,y) € u implies —y € up41
iff forall 7, 2: if ¥ € 4, then — f (¥, —2) € u implies 2z € ;1.

This provides us with a minimal set of elements that u, 1 should contain; put
F:={:cA|3Xciu(-f(Z —z) €u)}.

If —f(¥,—%) € u, we say that 7 drives = into F. We now take the first condition
into account as well, defining F' := {a,4+1} UF.

Our aim is to prove the existence of an ultrafilter «,, containing F". It will be
clear that this is sufficient to prove the theorem (note that @, | € F' as 1 € F). To
be able to apply the Ultrafilter Theorem 5.38, we will show that F' has the finite
meet property. We first need the following fact:

F is closed under taking meets. (5.24)

Let 2/, 2" be in F; assume that 2’ and 2" are driven into F by 7’ and 7", respec-
tively. We will now see that 7 := (2 - «f,..., 2], - xr) drives z := 2’ - 2’ into F,
that is, that — f (¥, —z) € w.

Since f is monotonic, we have f(Z, —2') < f(7’,—2'), and hence we find that
—f(@, -7 < —f(@ —2"). As u is upward closed and —f(#,—2') € u by
our ‘driving assumption,” this gives — f(Z, —7) € u. In the same way we find
—f(#,—2") € u. Now

f(f7 _Z) = f(f7 _(ZI ’ Z,/)) = f(‘fv (_Z/) + (_Z”)) = f(f7 _Z/> + f(fv _ZII)7

whence
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Therefore, — f(#, —z) € u, since u is closed under taking meets. This proves
(5.24).
We can now finish the proof and show that indeed

F’ has the finite meet property. (5.25)

By (5.24) it suffices to show that a,11-2 # 0 forall z € F. To prove this, we reason
by contraposition: suppose that 2z € F and a,+1 - 2 = 0. Let ¥ € # be a sequence
that drives z into F, that is, —f(Z, —2) € u. From @, - = = 0 it follows that
an+1 < —z, so by monotonicity of f we get — f(Z, —z) < —f(¥, ap+1). But then
—f(#, an+1) € u, which contradicts (5.23). This proves that indeed a1 - 2 # 0
and hence we have shown (5.25) and thus, Theorem 5.43. -

Canonicity

To conclude this section, let’s discuss the significance of this result. Clearly the
Jonsson-Tarski Theorem guarantees that we can represent the Lindenbaum-Tarski
algebras of normal modal logics as complex algebras, so it immediately converts
Theorem 5.32 into a completeness result with respect to complex algebras.

But we want more: because of the link between complex algebras and relational
semantics, it seems to offer a plausible algebraic handle on frame completeness.
And in fact it does — but we need to be careful. As should be clear from our work
in Chapter 4, even with the Jonsson-Tarski Theorem at our disposal, one more
hurdle remains to be cleared. In Exercise 5.2.6 we defined the notion of a complete
variety of BAOs: a variety V is complete if there is a frame class K that generates
V in the sense that V. = HSPCmK. The exercise asked the reader to show that
any logic A is complete if and only if V, is a complete variety. Now does the
Jonsson-Tarski Theorem establish such a thing? Not really — it does show that
every algebra [ is a complex algebra over some frame, thus proving that for any
logic A we have that V4 € CmK for some frame class K. So, this certainly gives
V € HSPCmK. However, in order to prove completeness, we have to establish
an equality instead of an inclusion. One way to prove this is to show that the
complex algebras that we have found form a subclass of V4. That is, show that
for any algebra 2 in the variety V,, the frame 2, is a frame for the logic A. This
requirement gives us an algebraic handle on the notion of canonicity.

Let’s examine a concrete example. Recall that K4 is the normal logic generated
by the 4 axiom, OOp — Op. We know from Theorem 4.27 that K4 is com-
plete with respect to the class of transitive frames. How can we prove this result
algebraically?

A little thought reveals that the following is required: we have to show that
the Lindenbaum-Tarski algebras for K4 are embeddable in full complex algebras
of transitive frames. Recall from Section 3.3 that the 4 axiom characterizes the
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transitive frames, thus in our proposed completeness proof, we would have to show
that 4 is valid in the ultrafilter frame (£x4(®))+ of Lk4(®P), or equivalently, that
((£K4(®))1)" belongs to the variety V,. Note that by Theorem 5.32 we already
know that £x4(®P) belongs to Vy.

As this example suggests, proving frame completeness results for extensions of
K algebraically leads directly to the following question: which varieties of BAOs
are closed under taking canonical embedding algebras? In fact, this is the required
algebraic handle on canonicity and motivates the following definition.

Definition 5.44 Let 7 be a modal similarity type, and C a class of boolean algebras
with T-operators. C is canonical if it is closed under taking canonical embedding
algebras; that is, if for all algebras 2(, Em%l is in C whenever 2 is in C.

Thus we now have two notions of canonicity, namely the logical one of Defini-
tion 4.30 and the algebraic one just defined. Using Theorem 5.32, we show that
these two concepts are closely related.

Proposition 5.45 Let 7 be a modal similarity type, and X a set of T-formulas. If
V5 is a canonical variety, then X is canonical.

Proof. Assume that the variety Vy is canonical, and let @ be the fixed countable set
of proposition letters that we use to define canonical frames. By Theorem 5.32, the
Lindenbaum-Tarski algebra £k (®) is in Vy; then, by assumption, its canonical
embedding algebra EmLky is in Vy. However, from Theorem 5.42 it follows that
this algebra is isomorphic to the complex algebra of the canonical frame of K3::

EmLks(P) = ((Lks(P))+)" = F*F) .

Now the fact that (F¥>)* is in V., means that §¥* |- ¥ by Proposition 5.24. But
this implies that X' is canonical.

An obvious question is whether the converse of Proposition 5.45 holds as well;
that is, whether a variety Vs is canonical if Y is a canonical set of modal formu-
las. However, note that canonicity of X' only implies that one particular boolean
algebra with operators has its embedding algebra in Vyx, namely the Lindenbaum-
Tarski algebra over a countably infinite number of generators. In fact, we are facing
an open problem here:

Open Problem 1 Let 7 be a modal similarity type, and X a canonical set of T-
formulas. Is V's; a canonical variety?

Equivalently, suppose that E is a set of equations such that for all countable
boolean algebras with T-operators we have the following implication

if U = E then ¢m2 |= E. (5.26)
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Is Vg a canonical variety? In other words, does (5.26) hold for all boolean alge-
bras with T-operators?

In spite of this unresolved issue, the algebraic notion of canonicity can do a lot of
work for us. The important point is that it offers a genuinely new perspective on
what canonicity is, a perspective that will allow us use algebraic arguments. This
will be demonstrated in Section 5.6 when we introduce persistence, a generaliza-
tion of the notion of canonicity, and prove the Sahlqvist Completeness Theorem.

Exercises for Section 5.3
5.3.1 Prove that for any frame §, ue g = (§1) ..

5.3.2 Let A be a normal modal logic. Give a detailed proof that the canonical frame § * is
isomorphic to the canonical extension of £ 4.

5.3.3 Let A denote the collection of sets X of integers satisfying one of the following
four conditions: (i) X is finite, (ii) X is co-finite, (iii)) X @ E is finite, (iv) X & E is
co-finite. Here E' denotes the set of all even integers, and & denotes symmetric difference:
X @ E=(X\E)U(FE\X). Consider the following algebra 2l = (A, U, —, &, f) where
the operation f is given by

) = {r—-1|ze X} if X isoftype (i) or (iii),
FX) = Z if X is of type (ii) or (iv).

(a) Show that 2l is a boolean algebra with operators.
(b) Describe 2 .

5.3.4 Let W be the set Z U {—00, 00} and let S be the successor relation on Z, that is,
S={(z,2+1) |z € Z}.

(a) Give a BAO whose ultrafilter frame is isomorphic to the frame § = (W, R) with
R=5U {(_007 _00)7 (OO? OO)}

(b) Give a BAO whose ultrafilter frame is isomorphic to the frame § = (W, R) with
R=SU W x {—o0,00}).

(c) Give a BAO whose ultrafilter frame is isomorphic to the frame § = (W, R) with
R=SU{(-00,—0)} U (W x {c0}).

5.3.5 An operation on a boolean algebra is called 2-additive if it satisfies

flety+2)=fle+y)+ fle+2)+ fly+2)

Now suppose that A = (A, +,—,0, f) such that (A, +,—,0) is a boolean algebra on
which f is a 2-additive operation. Prove that this algebra can be embedded in a complete
and atomic such algebra.
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5.4 Duality Theory

We now know how to build frames from algebras and algebras from frames in
ways that preserve crucial logical properties. But something is missing. Modal
logicians rarely study frames in isolation: rather, they are interested in how to con-
struct new frames from old using bounded morphisms, generated subframes, and
disjoint unions. And algebraists adopt an analogous perspective: they are inter-
ested in relating algebras via such constructions as homomorphisms, subalgebras,
and direct products. Thus modal logicians work in one mathematical universe, and
algebraists in another, and it is natural to ask whether these universes are system-
atically related. They are, and duality theory studies these links.

In this section we will do two things. First, we will introduce the basic dualities
that exist between the modal and algebraic universes. Second, we will demonstrate
that these dualities are useful by proving two major theorems of modal logic. We
assume that by this stage the reader has picked up the basic definitions and re-
sults concerning the algebraic universe (and in particular, what homomorphisms,
subalgebras, and direct products are). If not, check out Appendix B.

Basic duality results
Theorems 5.47 and 5.48 below give a concise formulation of the basic links be-

tween the algebraic and frame-theoretic universes. They are stated using the fol-
lowing notation.

Definition 5.46 Let 7 be a modal similarity type, § and & two 7-frames, and 2
and B two boolean algebras with T-operators. We recall (define, respectively) the
following notation for relations between these structures:

e § — & for § is isomorphic to a generated subframe of &,
e § — & for & is a bounded morphic image of §,

o 2 — B for A is isomorphic to a subalgebra of ‘B,

o A — B for B is a homomorphic image of A.

Theorem 5.47 Let T be a modal similarity type, § and & two T-frames, and A and
B two boolean algebras with T-operators.

(i) If§ — &, then " — FT.
(i) If § — &, then &+ »— FT.
(iii) If A »— B, then By — A,
(iv) If A — B, then B, — A,

Proof. This follows immediately from Propositions 5.51 and 5.52 below.
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Theorem 5.48 Let 7 be a modal similarity type, and §;,i € I, a family of -
frames. Then

n
(Lﬂ 3) =~ I3+
i€l i€l
Proof. We define a map 7 from the power set of the disjoint union 4, ; W; to the
carrier [];., P(W;) of the product of the family of complex algebras (" )ic;.

Let X be a subset of [4);; Wi; (X)) has to be an element of the set] [, ; P(W;).
And elements of the set [ [;; P(W;) are sequences o such that o(i) € P(W;). So
it suffices to say what the i-th element of the sequence 7(X) is:

n(X)(i) = X N W.
We leave it as an exercise to show that 7 is an isomorphism; see Exercise 5.4.6. -

Note that Theorem 5.48 (in contrast to Theorem 5.47) only states a connection in
the direction from frames to algebras. This is because in general

<H 9(1) 2 [Hew),.
il n i€l
The reader is asked to give an example to this effect in Exercise 5.4.1.

In order to prove Theorem 5.47, the reader is advised to recall the definitions
of the back and forth properties of bounded morphisms between frames (Defini-
tion 3.13). We also need some terminology for morphisms between boolean alge-
bras with operators.

Definition 5.49 Let 2 and 2/’ be two BAOs of the same similarity type, and let
n: A — A’ be a function. We say that 7 is a boolean homomorphism if 1 is a
homomorphism from (A, +, —,0) to (4’, +', =, 0"). We call  a modal homomor-
phism if 7 satisfies, for all modal operators A:

n(fA(alw . 7ap(A))) = fg(nala .o '777ap(A))'

(Here na; means 7(a;); we will sometimes use this shorthand to keep the notation
uncluttered.) Finally, n is a (BAO-)homomorphism if it is both a boolean and a
modal homomorphism. -

In the following definition, the construction of dual or lifted morphisms is given
(here the word ‘dual’ is not used in the sense of < being the dual of O).

Definition 5.50 Suppose ¢ is a map from W to W’; then its dual, 0% : P(W') —
P (W) is defined as:

0T (X" ={ueW|b(u)e X'}
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In the other direction, let 2( and ' be two BAOs, and 77 : 2l — 2’ be a map from A
to A’; then its dual is given as the following map from ultrafilters of 2 to subsets
of A:

(W) ={a € Alnla) €u'}.

The following propositions assert that the duals of bounded morphisms are nothing
but BAO-homomorphisms:

Proposition 5.51 Let §, §' be frames, and 6 : W — W' a map.

(i) 07 is a boolean homomorphism.
(i) mr(0T(Y]),...,07(Y}))) C O (mp(Y{,...,Y))), if0 has the forth prop-
erty.
(iii) mr(OT(YY),...,07(Y})) 2 0 mp (Y],...,Y)))), if6 has the back prop-
erty.
(iv) 07 is a BAO-homomorphism from §* to §', if 0 is a bounded morphism.
(v) 07 is surjective,if 0 is injective.
(vi) 07 is injective, if 0 is surjective.
Proof. For notational convenience, we assume that 7 has only one modal operator,
so that we can write § = (W, R).

(1). (Note that this was Exercise 5.1.1.) As an example, we treat complementa-

tion:
r €07 (=X') iff O(x) € —X' iff O(x) ¢ X' iff & 07 (X).
From this it follows immediately that 67 (—X") = —6+(X").
(i1). Assume that 6 has the forth property. Then we have
r€mp(0T(Y]),...,07(Y}))
= 3y1,...,y, such that 0(y;) € Y/ and Rry; ... yp
= 3Jyi,...,y, such that 0(y;) € Y/ and R'0(2)0(y1) ... 0(yn)
— 9($) € mR/(Yl’,. .. ,YA)
= x €0 (mp((Y],..., V).

(iii). Now suppose = € 67 (mp (Y{,...,Y,)). Then 6(x) € mp(Y{,...,Y,)).
So there are ¢/, ..., y,, in W’ with y; € Y/ and R'0(z)y] ... y,. As 6 has the back
property, there are y1,...,y, € W with §(y;) = y; for all 4, and Rxy; . ..y,. But
then y; € 67 (Y/) for every i, so & € mp(07 (Y{),...,07(Y})).

(iv). This follows immediately from items (i), (ii) and (iii).

(v). Assume that @ is injective, and let X be a subset of W. We have to find a
subset X’ of W’ such that 6+ (X’) = X. Define

0[X]:={0(z) e W' |z € X}.
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We claim that this set has the desired properties. Clearly X C 6" (6[X]). For the
other direction, let = be an element of 67 (9[X]). Then by definition, 6(z) € §[X],
so there is a y € X such that §(x) = 6(y). By the injectivity of 0, + = y. So
reX.

(vi). Assume that 6 is surjective, and let X’ and Y’ be distinct subsets of W',
Without loss of generality we may assume that there is an 2/ such that 2/ € X’ and
2’ ¢ Y'. As 0 is surjective, there is an x in W such that (z) = 2/. Soz € 61 (X'),
butx € 67 (Y'). So (X') # 0(Y’), whence 67 is injective.

Going in the opposite direction, that is, from algebras to relational structures, we
find that the duals of BAO-homomorphisms are bounded morphisms:

Proposition 5.52 Let A, A" be boolean algebras with operators, and n a map from
Ato A

(1) Ifn is a boolean homomorphism, then 1, maps ultrafilters to ultrafilters.

(i) If f'(n(ar),...,n(an)) < n(f(a1,...,an)), then 1y has the forth prop-
erty.

i) I f'(n(ar), ... ,n(an)) > n(flay,...,ay)) andn is a boolean homomor-
phism, then 1y has the back property.

(iv) Ifn is a BAO-homomorphism, then 1, is a bounded morphism from U/, to
At

(V) If'n is an injective boolean homomorphism, then n. : UfA' — Uf2A is
surjective.

(vi) If'n is an surjective boolean homomorphism, then 1. : UfA' — Uf2is
injective.

Proof. Again, without loss of generality we assume that 7 has only one modal
operator, so that we can write A = (A, +,—,0, f).

(1). This item is left as Exercise 5.4.2.

(ii). Suppose that Qpu'u] ... u;, holds between some ultrafilters «/, v}, ..., uj,
of A'. To show that 2, = Qpniu'niu)...nyu;,, let ay,..., ay, be arbitrary
elements of nyu), ..., nyul, respectively. Then, by definition of 7y, na; €
uj, so Qu'ul ... uy, gives f'(nai,....na,) € u'. Now the assumption yields
nf(ai,...,a,) € v, as ultrafilters are upward closed. But then f(ay,...,ay) €
n4u', which is what we wanted.

(ii1). This item is left as Exercise 5.4.2.

(iv). This follows immediately from items (i), (ii) and (iii).

(v). Assume that 7 is injective, and let u be an ultrafilter of 2[. We want to follow
the same strategy as in Proposition 5.51(v), and define

n[u] == {n(a) | a € u}.
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The difference with the proof of Proposition 5.51(v) is that here, 7y (n[u]) may not
be defined. The reason for this is that, in general, n[u] will not be upwards closed
and hence, not an (ultra)filter, while 7, is defined only for ultrafilters. Therefore,
we define

F':={d | n(a) < d forsomea € u }.
n

Clearly, n[u] C F'. We will first show that F” is a proper filter of 2 (note that
the clauses (F'1)—(F'3) which define filters are given in Definition 5.34). For (F'1),
observe that 1 € u, son(1) =1 € n[u] C F'. For (F2), assume a,b’ € F'. Then
there are a, b in u such that na < o’ and nb < ¥'. 1t follows that n(a-b) = na-nb <
a' - b € nlu]; hence, a’ - b’ € F' since a - b € u. This shows that F” is closed under
taking meets. It is trivial to prove (F'3), that is, that F’ is upwards closed. Finally,
in order to show that F” is proper, suppose that (' € F’. Then 0’ = na for some
a € u; as 0/ = n(0), injectivity of 1) gives that 0 = a, and hence, 0 € u. But then
u is not an ultrafilter.

By the Ultrafilter Theorem 5.38, F” can be extended to an ultrafilter «/. We claim
that u = n, (u’). First let a be in u, then na € n[u] C o/, so a € ny(u'). This
shows that u C 1, (u). For the other inclusion, it suffices to show that a & 1, (u')
if a ¢ u; we reason as follows:

aégu —a €u

—na = 1(—a) € nlu]
—n(a) € v’

na ¢ u'

a & ny(u')

(vi). Similar to Proposition 5.51, item (vi); see Exercise 5.4.2. -

ey

Readers familiar with category theory will have noticed that the operation (-)" is a

functor from the category of 7-frames with bounded morphisms to the category of
boolean algebras with T-operators, and vice versa for (-);. This categorial perspec-

tive is implicit in what follows, but seldom comes to the surface. In the remainder
of the section we will see how our algebraic perspective on modal logic that we
have developed can be applied.

Applications

In this subsection we tie a number of threads together and show how to use the
duality between frames and algebras to give very short proofs of some major theo-
rems of modal logic.

Our first example shows that all the results given in Proposition 3.14 on the
preservation of modal validity under the fundamental frame operations fall out
as simple consequences of well-known preservation results of universal algebra,
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namely that equational validity is preserved under the formation of subalgebras,
homomorphic images and products of algebras.

Proposition 5.53 Let 7 be a modal similarity type, ¢ a T-formula and § a T-frame.
Then

(1) If & is a bounded morphic image of §, then & Ik ¢ if § IF ¢.
(1) If ® is a generated subframe of §, then & I+ ¢ if § |- ¢.
(i) If'§ is the disjoint union of a family {3; | i € 1}, then § IF ¢ if for every
1€1,5;IF o
(iv) Ifueg Ik ¢ then 5 I ¢.

Proof. We only prove the first part of the proposition, leaving the other parts as
exercises for the reader.

Assume that § — &, and § IF ¢. By Proposition 5.24, we have 3" | ¢ =~ T,
and by Theorem 5.47, & is a subalgebra of F". So by the fact that equational
validity is preserved under taking subalgebras, we obtain that ¢ ~ T holds in &".
But then Proposition 5.24 implies that & IF ¢. -

Our second example is a simple proof of the Goldblatt-Thomason Theorem, which
gives a precise structural characterization of the first-order definable classes of
frames which are modally definable. We discussed this result in Chapter 3, and
gave a proof which drew on the tools of first-order model theory (see Theorem 3.19
in Section 3.8). As we will now see, there is also an algebraic way of viewing the
theorem: it is a more or less immediate corollary of Birkhoft’s Theorem (see Ap-
pendix B) identifying equational classes and varieties. The version we prove here
is slightly stronger than Theorem 3.19, since it applies to any class of frames that
is closed under taking ultrapowers.

Theorem 5.54 (Goldblatt-Thomason Theorem) Let 7 be a modal similarity
type, and let K be a class of T-frames that is closed under taking ultrapowers. Then
K is modally definable if and only if it is closed under the formation of bounded
morphic images, generated subframes, and disjoint unions, and reflects ultrafilter
extensions.

Proof. The left to right direction is an immediate corollary of the previous propo-
sition. For the right to left direction, let K be any class of frames satisfying the
closure conditions given in the theorem. It suffices to show that any frame § vali-
dating the modal theory of K is itself a member of K.

Let § be such a frame. It is not difficult to show that Proposition 5.24 implies
that §* is a model for the equational theory of the class CmK. It follows by
Birkhoff’s Theorem (identifying varieties and equational classes) that 3" is in the
variety generated by CmkK, so §* is in HSPCmK. In other words, there is a
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family (&;);c; of frames in K, and there are boolean algebras with operators 2
and B such that

(i) B is the product [ ],; (‘5;r of the complex algebras of the &;,
(i) A is a subalgebra of B, and
(iii) T is a homomorphic image of 2.

By Theorem 5.48, ‘B is isomorphic to the complex algebra of the disjoint union &
of the family (&;);cr:

+
B2et = (Lﬂ e5i> :
icl
As K is closed under taking disjoint unions, & is in K.
Now we have the following picture: F~ « 2 »— &T. By Theorem 5.47 it
follows that

(F)y = Ay« (87,

Since K is closed under ultrapowers, Theorem 3.17 implies that (&"); = ue & is
in K. As K is closed under the formation of bounded morphic images and generated
subframes, it follows that 2, and ue § = (F), (in that order) are in K. But then
J itself is also a member of K, since K reflects ultrafilter extensions. -

For our third example, we return to the concept of canonicity. We will prove an
important result and mention an intriguing open problem, both having to do with
the relation between canonical varieties and first-order definable classes of frames.
Both the result and the open problem were mentioned in Chapter 4 (see Theo-
rem 4.50 and the surrounding discussion), albeit in a slightly weaker form. To link
the earlier statements with the versions discussed here, simply observe that any
elementary class of frames is closed under the formation of ultraproducts.
First we need the following definition.

Definition 5.55 Let 7 be modal similarity type, and K be a class of 7-frames. The
variety generated by K (notation: Vi) is the class HSPCmK. A

Theorem 5.56 Let T be modal similarity type, and K be a class of T-frames which
is closed under ultraproducts. Then the variety Vk is canonical.

Proof. Assume that the class K of 7-frames is closed under taking ultraproducts.
We will first prove that the class HSCmK is canonical. Let 2 be an element of
this class; that is, assume that there is a frame § in K and an algebra B such that

A« B —FT.
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It follows from Theorem 5.47 that
em2 « EmB — EmFT = (ueF) . (5.27)

From Theorem 3.17 we know that ue § is the bounded morphic image of some
ultrapower & of §. Note that & is in K, by assumption. Now Theorem 5.47 gives

(ue )t — &7, (5.28)

Since &7 is in CmK, (5.27) and (5.28) together imply that 2 is in HSCmK.
Hence this class is canonical.

To prove that the variety generated by K is canonical, we need an additional fact.
Recall that according to Proposition 3.63, the ultrapower of a disjoint union can be
obtained as the disjoint union of ultraproducts.

Now assume that 2 is in Vg = HSPCmK. In other words, assume there is a
family {§; | ¢ € I} of frames in K and an algebra B such that

A « B — H S;"
icl
To prove that €m® is in Vi, it suffices to show that Em(][,.; gj) is in SPCmK
— the remainder of the proof is as before. Let § be the frame L‘Uze 1 i, then by
Theorem 5.48, §* = ], 37 Hence, by Theorem 5.47:
¢m <H3j) = (F)4)t = (ued)™. (5.29)
el
By Theorem 3.17, there is an ultrapower & of § such that & — ueF. Now we
apply Proposition 3.63, yielding a frame ) such that (i) $ is a disjoint union of
ultraproducts of frames in K and (ii) § — &. Putting these observations together
we have ue § « & « . Hence, by Theorem 5.47:

(ue )" - BT - 5t (5.30)

Note that §) is a disjoint union of frames in K, since K is closed under taking
ultraproducts. This implies that $5" is in PCmK. But then it follows from (5.29)
and (5.30) that €m(][,; ;) is in SPCmK, which is what we needed.

Example 5.57 Consider the modal similarity type {o, @, 1’} of arrow logic, where
o is binary, ® is unary and 1’ is a constant. The standard interpretation of this
language is given in terms of the squares (cf. Example 1.24). Recall that the square
Sy = (W, C, R, I) is defined as follows.

W = UxU
(w,x),(y,2)) iff u=wand v==2 and z =1y

C((u,v)

R((u,v), (w,x)) iff wu==x and v=w
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I(u,v) iff w=o.

It may be shown that the class SQ of (isomorphic copies of) squares is first-order
definable in the frame language with predicates C, R and I. Therefore, Theo-
rem 5.56 implies that the variety generated by SQ is canonical. This variety is
well-known in the literature on algebraic logic as the variety RRA of Representable
Relation Algebras. See Exercise 5.4.5. -

Rephrased in terminology from modal logic, Theorem 5.56 boils down to the fol-
lowing result.

Corollary 5.58 Let 7 be a modal similarity type, and K be a class of T-frames
which is closed under ultraproducts. Then the modal theory of K is a canonical
logic.

We conclude the section with the foremost open problem in this area: does the
converse of Theorem 5.56 holds as well?

Open Problem 2 Let 7 be modal similarity type, and NV a canonical variety of
boolean algebras with T-operators. Is there a class K of T-frames, closed under
taking ultraproducts, such that \V is generated by K?

Exercises for Section 5.4
5.4.1 Consider a countably infinite collection (2;);c; of finite algebras that are non-trivial,
that is, of size at least 2.

(a) Show that the product ], ; ?; has uncountably many ultrafilters.
(b) Show that the ultrafilter frame of a finite algebra is finite, and that hence, the disjoint
union 4, ;(%A;) 4 is countable.

(c) Conclude that (TT;c; ), % Wie (W)

5.4.2 Prove Proposition 5.52(i), (iii) and (vi). Prove (iii) first for unary operators; for the
general case, see the proof of the Jonsson-Tarski theorem for inspiration.

5.4.3 Prove or disprove the following propositions:

(a) For any two boolean algebras with operators 2 and B: 2{ . = B only if A = ‘B.
(Hint: first consider the question for plain boolean algebras, and then consider
specimens of BAOs as in Exercise 5.2.3 and Exercise 5.3.3.)

(b) For any two frames § and &: F+ = &+ only if § = &.

5.4.4 Consider the frames § = (X, R) and & = (Y, .S) given by

X=N Y =NU{oo}
R={(r,y) e X x X |z#y} S={(zy) eV xY [z #y}U{(o0,00)}

(a) Show that § is not a bounded morphic image of &.





