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Abstract

The well-known Dyckoff’s 1992 calculus/procedure for intuitionistic propo-
sitional logic is considered and analyzed. It is shown that the calculus is
Kripke complete and the procedure in fact works in polynomial space. Then
a multi-conclusion intuitionistic calculus is introduced, obtained by adding
one new rule to known calculi. A simple proof of Kripke completeness and
polynomial-space decidability of this calculus is given. An upper bound on
the depth of a Kripke counter-model is obtained.
Keywords: intuitionistic logic, polynomial-space, sequent calculus, Kripke
semantics
Classification: 03B20, 03B35, 03F05.

1 Introduction

A non-classical logic often is or can be defined by means of its Kripke semantics:
a propositional formula A may or may not be satisfied in a node of a Kripke
model K, if it is not satisfied in some node of K then K is a counter-model for A,
and a tautology of the given logic is defined as a formula having no counter-model
in the class C of models chosen to represent that logic. R. Ladner in [7] constructs
decision procedures for the most common modal logics like S4 or T based purely
on Kripke semantics. When attempting to decide whether a given formula A has
a counter-model in the class C one often faces the need to construct a Kripke
model with a node a such that all formulas from a certain finite set Γ are sat-
isfied and simultaneously all formulas from another finite set ∆ are not satisfied
in a. Sequent calculi are not mentioned in [7], but a model K with a node a such
that a satisfies all formulas in Γ and violates all formulas in ∆ is the same as a
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Kripke counter-model for the sequent 〈Γ ⇒ ∆ 〉. So there exists a natural link
from Kripke semantics to sequent (Gentzen) calculi: when constructing a decision
procedure one is sometimes able to simultaneously design a sequent calculus for
the logic in question.

A decision procedure can also be based on a sequent calculus itself. It works
so that it constructs the proof of the given sequent by using the rules of the
calculus in reverse, i.e. by starting from a given sequent and using the rules of
the calculus in backward direction, with a hope to arrive at axioms (i.e. initial
sequents). Then it may be a problem to ensure termination of the procedure.
For example the contraction rule, if used in reverse, allows one to duplicate any
formula of the given sequent. So an unorganized use of the contraction rule may
cause the procedure to cycle. It is known that the presence of the contraction rule
is essential for many calculi met in the literature. If, as in this paper, sequents
consist of sets rather than sequences of formulas then there is no contraction
rule, but the option to duplicate a formula is still there because the rules allow a
principal formula to simultaneously be a side formula.

R. Dyckoff in [4] found a terminating calculus for intuitionistic propositional
logic. However the paper [4] does not mention Kripke semantics and is not specific
about the computational complexity of the procedure obtained. We analyze the
paper [4] and show that a Kripke completeness theorem is in fact implicit in it.
Thus this paper offers a better insight into [4], especially to those who primarily
think about Kripke semantics. We also show that if some improvements are
implemented then it can be shown that the decision procedure works in polynomial
space. Then we consider a second calculus for intuitionistic logic, now a multi-con-
clusion one, allowing any number of formulas in succedent. We again show, in
this case by a much simpler proof, that the calculus in question is complete w.r.t.
Kripke semantics and yields a polynomial-space decision procedure. We also
obtain an upper bound on the depth of Kripke counter-model. The advantage of
our multi-conclusion calculus is that it differs from calculi known e.g. from [11]
and [6] in only one simple additional rule.

This paper pays more attention to the question whether decision procedures
can be derived from known calculi than to the question how to construct the most
efficient decision procedure. I believe that it is of some interest to have a relatively
simple proofs that simultaneously show Kripke completeness, cut eliminability and
polynomial-space decidability for calculi more or less traditional. Note however
that J. Hudelmaier [5] constructed a calculus and a decision procedure with much
lower space requirements than ours.

2 Kripke semantics and sequent calculi

We choose {&,∨,→,⊥} as the base set of logical connectives. So propositional
formulas are built up from (propositional) atoms and the symbol ⊥ for falsity
using conjunction, disjunction, and implication. We treat ¬A as a shorthand
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for A→⊥. In syntax analysis, implication→ has lower priority than conjunction &
and disjunction ∨. So e.g. p ∨ q → r is a shorthand for (p ∨ q) → r. A sequent
is a pair of finite sets of formulas; we write 〈Γ ⇒ ∆ 〉 for a sequent consisting
of sets Γ and ∆. The sets Γ and ∆ are called antecedent and succedent of the
sequent 〈Γ ⇒ ∆ 〉. When writing down sequents we use the usual notational
conventions and omit curly braces and symbols for set union and the empty set.
So e.g. 〈Γ, C ⇒ 〉 is a shorthand for 〈Γ ∪ {C} ⇒ ∅ 〉, etc.

A Kripke frame for intuitionistic logic is a pair 〈W,≤〉 where W 6= ∅ and
≤ is a reflexive and transitive relation on W . The elements of W are nodes;
if x ≤ y then the node y is said to be accessible from x. A truth relation (or
a forcing relation) on a Kripke frame 〈W,≤〉 is a relation ‖− between nodes
and propositional formulas satisfying the persistency condition (if x ‖− p for an
atom p and x ≤ y then y ‖− p), respecting conjunctions, disjunctions, and falsity
(x ‖− A&B iff x ‖− A and x ‖− B, x ‖− A∨B iff x ‖− A or x ‖− B, and x ‖−/ ⊥)
and satisfying the well-known “modal” condition for implication: x ‖− A → B
iff for each y accessible from x it is the case that y ‖− B whenever y ‖− A. It
can easily be verified that any relation between nodes and propositional atoms
satisfying the persistency condition extends uniquely to a truth relation. Also, if
‖− is a truth relation on a frame 〈W,≤〉 then the persistency condition holds for
all formulas, not just atoms. A Kripke model for intuitionistic propositional logic
is a triple 〈W,≤, ‖−〉 where 〈W,≤〉 is a Kripke frame and ‖− is a truth relation
on 〈W,≤〉.

If K = 〈W,≤, ‖−〉 is a Kripke model then x ‖− A is read “A is satisfied in x” or
“x satisfies A”. If A is satisfied in all x ∈ W then A is valid in K. The model K is
a counter-model for a sequent 〈Γ ⇒ ∆ 〉 if some element of its domain W satisfies
all formulas in Γ and simultaneously none formula from ∆. A sequent 〈Γ ⇒ ∆ 〉
is intuitionistically tautological if it has no counter-model. A formula A is an
intuitionistic tautology if the sequent 〈 ⇒ A 〉, with empty antecedent and A as
the only formula in succedent, is intuitionistically tautological. It is evident that
A is an intuitionistic tautology iff A is valid in each Kripke model.

An example of a Kripke frame is the structure 〈{a, b}, {[a, a], [a, b], [b, b]}〉 hav-
ing two nodes a and b, with b accessible from a but a not accessible from b. Let a
truth relation on this frame be defined by stipulating that p is satisfied in b and
violated in a, while q is violated in both a and b. One can easily check that the
formula p→ q is nowhere satisfied, hence a ‖− (p→ q)→ p. Thus this model is a
counter-model for the sequent 〈 (p→ q)→ p ⇒ p 〉. This model also shows that
the formula ((p→ q)→ p)→ p is not an intuitionistic tautology.

Examples of sequents that are intuitionistically tautological are

〈Γ, p ⇒ p 〉, 〈Γ,⊥ ⇒ G 〉. (1)

Another example of an intuitionistically tautological sequent is any sequent of the
form 〈 (A→B) ∨ (B →A)→⊥ ⇒ 〉.

We call the least element (if it exists) of a Kripke model K a root of K.
If K = 〈W,≤, ‖−〉 and a0 ∈ W then submodel generated by a0 is the model
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K0 = 〈W0,≤0, ‖−0〉 where W0 = { x ∈ W ; a0 ≤ x } and ≤0 and ‖−0 are the
restrictions of ≤ and ‖− to W0. One can easily verify that if A is a propositional
formula and x ∈ W0 then x ‖− A ⇔ x ‖−0 A. So in the sequel we can assume
that if K is a counter-model for A then K has a root a and that it is the root a
where a ‖−/ A. More about Kripke models can be found in various sources, e.g. in
[2] or [11].

Sequent calculi have unary and binary deduction rules. An example of a binary
rule (with two premises) is

〈Γ, E ⇒ G 〉, 〈Γ, F ⇒ G 〉 / 〈Γ, E ∨ F ⇒ G 〉. (4)

The formula in which the connective is introduced, which is the formula E ∨ F
in case of the rule (4), is called principal formula, while the formulas that may
disappear by using the rule, which are the formulas E and F in case of the rule (4),
could be called minor formulas of the rule in question. The formulas that are not
changed by using the rule, which are the formulas in Γ ∪ {G} in case of (4), are
called side formulas. Both minor and principal formulas may simultaneously be
side formulas. This, in case of the rule (4), means that each of the formulas E, F
and E ∨ F can be an element of the set Γ.

The rule (4) is sound in the sense that if both sequents 〈Γ, E ⇒ G 〉 and
〈Γ, F ⇒ G 〉 are intuitionistically tautological then also the resulting sequent
〈Γ, E ∨ F ⇒ G 〉 is intuitionistically tautological. The rule (4), moreover, is
invertible in the sense that 〈Γ, E ∨ F ⇒ G 〉 is intuitionistically tautological if
and only if both sequents 〈Γ, E ⇒ G 〉 and 〈Γ, F ⇒ G 〉 are intuitionistically
tautological.

3 A single-conclusion decision procedure

In this section we consider a single-conclusion calculus for intuitionistic proposi-
tional logic, where all sequents have exactly one formula in succedent. We will
specify a decision procedure for intuitionistic propositional logic based on this
calculus.

Lemma 1 The following rules:

〈Γ ⇒ E 〉, 〈Γ ⇒ F 〉 / 〈Γ ⇒ E & F 〉 (2)
〈Γ, E, F ⇒ G 〉 / 〈Γ, E & F ⇒ G 〉 (3)

〈Γ, E ⇒ G 〉, 〈Γ, F ⇒ G 〉 / 〈Γ, E ∨ F ⇒ G 〉 (4)
〈Γ, E ⇒ F 〉 / 〈Γ ⇒ E → F 〉 (5)

〈Γ, p, D ⇒ G 〉 / 〈Γ, p, p→D ⇒ G 〉, (6)

where D, E, F , G are formulas and p is an atom, are sound and invertible. The
rules

〈Γ ⇒ E 〉 / 〈Γ ⇒ E ∨ F 〉, 〈Γ ⇒ F 〉 / 〈Γ ⇒ E ∨ F 〉 (7)
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〈Γ, C →D ⇒ C 〉, 〈Γ, D ⇒ G 〉 / 〈Γ, C →D ⇒ G 〉 (8)

are sound. The rule

〈Γ, D ⇒ G 〉 / 〈Γ, D, C1 → (C2 → ( . . → (Ck →D) . .) ⇒ G 〉 (9)

is sound and invertible.

Proof Look at (5). Let K = 〈W,≤, ‖−〉 be a counter-model for 〈Γ ⇒ E → F 〉.
Assume that K has a root a and that a satisfies all formulas in Γ and violates
the implication E → F . So there is a node a0 such that a0 ‖− E and a0 ‖−/ F .
By the persistency condition, a0 satisfies all formulas in Γ. So the submodel K0

of K generated by a0 is a counter-model for the sequent 〈Γ, E ⇒ F 〉. All the
remaining cases are trivial.

We intend to base our decision procedure on the rules in Lemma 1 and on
other rules specified below. It starts with a given sequent 〈Σ ⇒ H 〉 and (es-
sentially) repeatedly applies the rules (2)–(6) to it in the reverse (right to left)
direction, thus reducing the question whether a given sequent is intuitionistically
tautological to same questions about one or two simpler sequents. If all paths of
the computation terminate with an initial sequent of the form (1) then the original
sequent 〈Σ ⇒ H 〉 is intuitionistically tautological. If none of the rules (2)–(6),
still in the right to left direction, is applicable to a sequent which is not initial then
the sequent is irreducible in the sense of the following definition. When speaking
about application of a rule, we will omit the words “in reverse” or “right to left”
when the direction is clear from context.

Definition 2 A sequent 〈Γ ⇒ G 〉 is irreducible if

◦ G is a disjunction, or an atom p such that p /∈ Γ, or the formula ⊥,

◦ no formula in Γ is a conjunction, disjunction, or the formula ⊥,

◦ Γ contains no pair p, p→D where p is an atom.

This definition, as well as the rule (6) above, is taken from R. Dyckhoff’s [4].
Note that if 〈Γ ⇒ G 〉 is irreducible then Γ contains only implications and atoms.

Theorem 3 An irreducible sequent 〈Γ ⇒ G 〉 is intuitionistically tautological if
and only if some of the following conditions is true:

◦ G has the form E ∨ F and some of the sequents 〈Γ ⇒ E 〉 and 〈Γ ⇒ F 〉
is intuitionistically tautological, or

◦ there is an implication C →D ∈ Γ such that C is compound (not an atom
or ⊥) and both sequents 〈Γ ⇒ C 〉 and 〈Γ − {C → D}, D ⇒ G 〉 are
intuitionistically tautological.
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Figure 1: Amalgamation of Kripke models

Proof The non-trivial direction is ⇒. Assume that G is E ∨ F ; the other cases,
where G is ⊥ or an atom, are similar but simpler. Let C1→D1, . . , Cm→Dm be the
list of all implications C →D in Γ such that C is compound. Assume that none
of the sequents 〈Γ ⇒ E 〉 and 〈Γ ⇒ F 〉 is intuitionistically tautological and
assume that for each i some of the two sequents 〈Γ − {Ci → Di}, Di ⇒ G 〉
and 〈Γ ⇒ Ci 〉 is not intuitionistically tautological. It is evident that any
Kripke counter-model for 〈Γ − {Ci → Di}, Di ⇒ G 〉 is automatically the de-
sired counter-model for the sequent 〈Γ ⇒ G 〉. So we may assume that for
each i it is the sequent 〈Γ ⇒ Ci 〉 which is not intuitionistically tautological.
Let K1, . . , Km be counter-models for 〈Γ ⇒ C1 〉 to 〈Γ ⇒ Cm 〉 respectively,
and let Km+1 and Km+2 be counter-models for 〈Γ ⇒ E 〉 and 〈Γ ⇒ F 〉. We
may assume that the models K1, . . , Km+2 have roots a1, . . , am+2, all nodes ai

satisfy all formulas in Γ, the node ai for i ≤ m violates Ci, and am+1 and am+2

violate E and F respectively. Let K be the model depicted in Fig. 1, with a
new root a. To finish the definition of the model K we have to specify the truth
relation ‖−, i.e. to state the truth values of atoms in a. Let all atoms p ∈ Γ be
evaluated positively in a and all remaining atoms negatively in a. Note that this
choice does not violate the persistency condition, since all atoms in Γ are posi-
tive in all nodes of all submodels Kj . Each of the formulas Ci may be satisfied
in various nodes of the submodels Kj , but the fact that Ci is violated in ai is
sufficient for a conclusion that a ‖−/ Ci. Similarly a ‖−/ E and a ‖−/ F . We have
to check that all formulas in Γ are satisfied in a. The set Γ contains only atoms
and implications, and atoms are satisfied in a by definition. An implication with
a compound premise must be one of Ci → Di. To verify a ‖− Ci → Di we have
to check that x ‖− Di for each x accessible from a such that x ‖− Ci. If x is a
node of some Kj then this is true because all formulas in Γ are valid in Kj . If
x is a then this is also true since x ‖−/ Ci. Note that a similar argument applies
also to implications of the form ⊥→ D and p→ D. If p→ D ∈ Γ then, by the
definition of irreducible sequent, p is not in Γ and as such is evaluated negatively
in a.

So if 〈Γ ⇒ G 〉 is an intuitionistically tautological sequent then the rules
(7) and (8) may be not applicable (in reverse) to any formula we choose; but
if 〈Γ ⇒ G 〉 is irreducible then Theorem 3 guarantees that some of these rules
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is applicable to some formula. Theorem 3 can be viewed as a generalization of
Harrop’s theorem. A similar theorem appears also in [1] and is implicit in [5].
Unfortunately Theorem 3 is still not sufficient for a decision procedure to be
based on: it is not sure that the sequent 〈Γ ⇒ Ci 〉 is shorter than 〈Γ ⇒ G 〉,
and thus it is not guaranteed that using the left implication rule (8) in reverse
yields two simpler sequents. The solution is—when processing an implication in
antecedent—to closer look at the form of its premise. This is one of the important
ideas in [4].

Lemma 4 The following rules are sound and invertible:

〈Γ, A→ (B →D) ⇒ G 〉 / 〈Γ, A & B →D ⇒ G 〉, (10)
〈Γ, A→D, B →D ⇒ G 〉 / 〈Γ, A ∨B →D ⇒ G 〉, (11)
〈Γ, A,B →D ⇒ B 〉 / 〈Γ, (A→B)→D ⇒ A→B 〉. (12)

Proof is obvious.

Now we are able to specify the decision procedure for sequents with one for-
mula in succedent, and prove its properties. The heart of the procedure is a
Boolean function S which decides about a given sequent whether it is intuition-
istically tautological. The function S recursively calls itself in some cases. The
decision procedure (main program) reads the input sequent 〈Σ ⇒ H 〉 and sim-
ply calls the function S with a parameter 〈Σ ⇒ H 〉. The function S denotes its
parameter 〈Γ ⇒ G 〉 and works as follows:

(a) If G is E & F then call S on 〈Γ ⇒ E 〉 and then on 〈Γ ⇒ F 〉. Return
true if both calls return true, return false otherwise.

If G is E → F then use the rule (5), i.e. call S on 〈Γ, E ⇒ F 〉 and return
whatever it returns.

If Γ contains a formula of the form E &F , E∨F , A&B→D, or A∨B→D,
then proceed analogically, i.e. use the rule (3), (4), (10), or (11), respectively.

(b) If Γ contains a pair p, p → D then: replace p → D by D (i.e. use the
rule (6)), remove all formulas of the form C1 → ( . . → (Ck →D) . .) from Γ
(i.e. use the rule (9) repeatedly), call S on the resulting sequent and return
whatever it returns.

(c) If ⊥ ∈ Γ or if G is an atom such that G ∈ Γ then return true.

(d) If G is E ∨F then call S on 〈Γ ⇒ E 〉 and on 〈Γ ⇒ F 〉. If some of the
calls returns true then return true.

(e) Create a list (A1 → B1)→D1, . . , (Am → Bm)→Dm of all implications
in Γ with a compound premise. Denote Γi the set Γ−{(Ai→Bi)→Di} and
denote Γ−i the set resulting from Γi by removing all implications of the form
C1→( . . →(Ck→Di) . .). For i := 1 to m call S on 〈Γi, Ai, Bi→Di ⇒ Bi 〉
and on 〈Γ−i , Di ⇒ G 〉. If for some i both calls return true then return true.
Otherwise return false.
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If the function S reaches the instruction (e) then the sequent 〈Γ ⇒ G 〉 is ir-
reducible, and moreover, compound premises of implications in Γ must again be
implications. If the number of such implications is zero then the function S re-
turns false. Further explanation about the instruction (e) is in the final part of
proof of Theorem 5.

Theorem 5 The procedure specified above works in polynomial space and cor-
rectly decides whether a given sequent is intuitionistically tautological.

Proof The computation of a function like S, calling recursively itself in some
cases, can be viewed as a tree T with vertices labeled by parameters of the calls.
If S has to process a sequent 〈Γ ⇒ G 〉, and when doing so it recursively calls
itself with parameters 〈Γ1 ⇒ G1 〉 to 〈Γm ⇒ Gm 〉, then the tree T contains a
vertex labeled by 〈Γ ⇒ G 〉, with m immediate successors labeled by 〈Γ1 ⇒ G1 〉
to 〈Γm ⇒ Gm 〉. The root of T is labeled by the input sequent 〈Σ ⇒ H 〉. We
have to show that each path in T terminates, i.e. ends with a vertex labeled by a
sequent processed without recursive calls.

We associate weights with connectives and sequents. As in [4], the weight of
conjunction & is 2 while the weight of ∨ and → is 1. The weight of an atom is
also 1. A weight of a sequent depends on the way how the sequent appeared in the
data of the function S. To define it we think of some occurrences of implications as
highlighted. It will be clear from what is said below that a highlighted implication
never occurs in the scope of a conjunction or a disjunction or in the “left scope”
of an implication. It also never occurs in a succedent of a sequent. Highlighted
implications and the notion of suffix defined below are meant to trace how a
formula occurred in an antecedent of a sequent.

Initially no implication is highlighted. If the function S uses the rule (10), replac-
ing some formula A&B→D ∈ Γ by A→(B→D), then if the formula A→(B→D)
is new, i.e. not an element of Γ, all implications inside or (immediately) before
the subformula D are preserved, i.e. highlighted or not according to whether they
were highlighted in the original formula A & B→D. The new implication, which
is the main connective in A→ (B→D), is not highlighted. If S uses the rule (11)
and replaces a formula A ∨B →D by two formulas A→D and B →D, then for
each of these two formulas, if the formula is new, all implications inside the sub-
formula D are preserved, and the main implication, before the formula D, becomes
highlighted. When S applies instruction (e) it chooses a formula (A→B)→D in Γ
and replaces it by the pair A, B→D in one embedded call and by the formula D in
the associated embedded call. In the first case, if B→D is new then implications
inside and immediately before the subformula D are preserved. In the second
case, if D is new then implications inside it are preserved. In the remaining cases
nothing happens with highlighted implications: in instructions (b) and (e) some
implications, highlighted or not, merely disappear, and if S uses any of the rules
(2)–(5) or (7), in instructions (a) or (d), then it processes a formula containing
no highlighted implications.
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13
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〈Γ, t ∨ q→ (w→ r), u→. (w→. r), v →. (w→. r), s→. r ⇒ G 〉
〈Γ, t ∨ q→ (w→ r), (u ∨ v)→ (w→. r), s→. r ⇒ G 〉
〈Γ, t ∨ q→ (w→ r), (u ∨ v) & w→. r, s→. r ⇒ G 〉
〈Γ, t ∨ q→ (w→ r), ((u ∨ v) & w) ∨ s→ r ⇒ G 〉

Figure 2: Weights and highlighted implications

In any stage of the computation, each formula E ∈ Γ can be written in the
form C1 → ( . . → (Ck → D) . .) where none of the formulas Ci and D contain
highlighted implications. The number k can be zero and D can still be an impli-
cation. The part → (Ci→ ( . . → (Ck →D) . .) of the formula E, together with an
information which implications are highlighted in it, is a suffix of E provided its
leftmost symbol is a highlighted implication. So the number of different suffixes
of E equals the number of highlighted implications in E. Weight of a sequent
〈Γ ⇒ G 〉 is defined as the sum of weights of all occurrences of connectives and
atoms in Γ ∪ {G}, with the following exception. If a formula E ∈ Γ has a suf-
fix →D then the symbols in this suffix count only once for each formula in Γ that
also has →D as a suffix.

An example of how the weights are determined is given in Fig. 2. The five sequents
can be viewed as both a fragment of a proof or local data of the function S, where
higher sequents correspond to deeper recursive calls. Highlighted implications are
marked with dots. In the formulas shown in the topmost sequent we have a suffix
→. (w→ r) which occurs twice, then a suffix →. (w→. r) which also occurs twice,
and a suffix →. r which occurs three times. Numbers above symbols show how the
weight is computed. If Γ contains no highlighted implications then the weight of
the topmost sequent is 13 plus the number of symbols in Γ∪{G} plus the number
of conjunctions in Γ ∪ {G}.
Let the input sequent 〈Σ ⇒ H 〉 have n symbols. Then its weight can be bounded
by 2n. We would like to claim that whenever S calls itself while processing
a sequent 〈Γ ⇒ G 〉, the weight of the parameter(s) of the embedded call is
lower than the weight of the current parameter 〈Γ ⇒ G 〉. In most cases it
is true. For example, if S uses the rule (11), replacing a formula A ∨ B → D
by two formulas A → D and B → D, then the connectives inside D and the
implication next to D do not count twice, and the profit is the removal of one
disjunction. If S uses the rule (6), replacing a formula p → D by D, then it
is quite possible that only the atom p in p → D counts, while in the embedded
call more symbols in D count. This happens if the outermost implication is
highlighted, i.e. if the formula p → D has a suffix → D, and there are more
formulas in Γ with the same suffix. Note however that when the function S
applies instruction (b) it simultaneously removes all other formulas having the
same suffix →D. So the minimal possible profit of replacing the formula p→D
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by D and removing all formulas of the form C1→ ( . . → (Ck→D) . .) is a decrease
in weight by 1, the weight of the atom p. The same phenomenon occurs in
instruction (e), when (A→ B)→D is replaced by D. The only exception when
the weight may not decrease is that call in instruction (e) where the function S
replaces a sequent 〈Π, (A → B) → D ⇒ G 〉 by 〈Π, A, B → D ⇒ B 〉: the
formula B appears twice in the embedded call and it can be of higher weight than
the removed formula G. However, this happens at most once for each (occurrence
of a) subformula B of the original sequent 〈Σ ⇒ H 〉. Thus we can claim that
whenever the function S recursively calls itself, the weight of the parameter of the
embedded call is lower, except that at most n times the weight is increased by at
most 2n. This means that each path in the tree T of embedded calls has length
at most quadratic in the length of the input sequent 〈Σ ⇒ H 〉, and our decision
procedure terminates on any input 〈Σ ⇒ H 〉. It is known ([3], [8], . . . ) that the
space requirements of a function like S, calling recursively itself, is determined
by the sum of sizes of local data of instances of S along any path in the tree
of recursive calls. When S is called with parameter 〈Γ ⇒ G 〉 its local data is
essentially the sequent 〈Γ ⇒ G 〉 itself, and one can check that its size is also
quadratic in n. So our procedure works in polynomial space.

Let’s say that a vertex in the tree T labeled by 〈Γ ⇒ G 〉 is positive or neg-
ative according to whether S returns true or false when processing it. Let the
depth of a vertex v be the length of the longest path starting at v, where the
length of a one-element path is zero. Consider the following claim. Let the
depth of a vertex v ∈ T labeled by 〈Γ ⇒ G 〉 be k. Then v is positive if
and only if 〈Γ ⇒ G 〉 is intuitionistically tautological. This claim is proved
by induction on k. Let, for example, v be a vertex of depth k labeled by a se-
quent 〈Γ ⇒ G 〉 which is intuitionistically tautological and such that none of
instructions (a)–(c) in S is applicable. Assume that G is not a disjunction. Then
G must be ⊥ or an atom p such that p /∈ Γ, and Γ contains, besides the impli-
cations (A1 → B1) → D1, . . , (Am → Bm) → Dm created in instruction (e), only
some atoms and some implications p→D where p /∈ Γ. Theorem 3 says that for
some i both sequents 〈Γi, (Ai → Bi)→Di ⇒ Ai → Bi 〉 and 〈Γi, Di ⇒ G 〉 are
intuitionistically tautological. It follows from invertibility of rules (12) and (9)
that both sequents 〈Γi, Ai, Bi→Di ⇒ Bi 〉 and 〈Γ−i , Di ⇒ G 〉, which act as pa-
rameters of the embedded calls, are intuitionistically tautological. The immediate
successors of v labeled by these two sequents have depth lower than k. So, by the
induction hypothesis, S returns true when called on them. Hence the result of the
computation in instruction (e) is true, i.e. v is positive. We leave the remaining
cases to the reader.

A corollary of our considerations is that the single-conclusion calculus with
initial sequents (1) and rules (2)–(7) and (9)–(12), or (2)–(9), is sound and com-
plete with respect to Kripke semantics of intuitionistic logic. Note that as to
termination of the decision procedure the paper [4] refers the reader to [3] which
gives a general and widely applicable method for proving termination but says
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nothing about polynomial-space. Note also that J. Hudelmaier [5] constructs a
calculus and a decision procedure much more efficient than ours: it works in
space O(n log n).

4 A multi-conclusion decision procedure

The left implication rule (8) from the previous section is inherently non-invertible
because if it is used in reverse and the formula B replaces the formula G, the
formula G disappears without a refund. The multi-conclusion calculus, allowing
any number of formulas in succedent, is more convenient in this respect because
the usual multi-conclusion left implication rule

〈Γ ⇒ ∆, A 〉, 〈Γ, B ⇒ ∆ 〉 / 〈Γ, A→B ⇒ ∆ 〉, (∗)

while still non-invertible, can be replaced by the following “non-extending” variant

〈Γ, A→B ⇒ ∆, A 〉, 〈Γ, A→B, B ⇒ ∆ 〉 / 〈Γ, A→B ⇒ ∆ 〉 (20)

which is invertible. Note that (20) can be simulated by (∗) by taking Γ∪{A→B}
for the set Γ in (∗). The rule (20) is a restricted variant of (∗): while the rule (∗)
allows the principal formula A → B to simultaneously be a side formula, the
rule (20) requires it. To simplify (thinking about) the decision procedure specified
below, we formulate also the rules for conjunction and disjunction as non-extend-
ing. So our multi-conclusion calculus has initial sequents

〈Γ, p ⇒ ∆, p 〉, 〈Γ,⊥ ⇒ ∆ 〉, (13)

and the following rules:

〈Γ ⇒ ∆, A & B, A 〉, 〈Γ ⇒ ∆, A & B, B 〉 / 〈Γ ⇒ ∆, A & B 〉 (14)
〈Γ ⇒ ∆, A ∨B,A, B 〉 / 〈Γ ⇒ ∆, A ∨B 〉 (15)

〈Γ, A ⇒ B 〉 / 〈Γ ⇒ ∆, A→B 〉 (16)
〈Γ ⇒ ∆, A→B, B 〉 / 〈Γ ⇒ ∆, A→B 〉 (17)
〈Γ, A & B, A, B ⇒ ∆ 〉 / 〈Γ, A & B ⇒ ∆ 〉 (18)

〈Γ, A ∨B, A ⇒ ∆ 〉, 〈Γ, A ∨B, B ⇒ ∆ 〉 / 〈Γ, A ∨B ⇒ ∆ 〉 (19)
〈Γ, A→B ⇒ ∆, A 〉, 〈Γ, A→B, B ⇒ ∆ 〉 / 〈Γ, A→B ⇒ ∆ 〉. (20)

Note that the calculus is very similar to calculi defined e.g. in [6] and [11]. The
main difference is the additional rule (17) which can be called weak implication
rule. It can easily be checked that all rules (14)–(20) are sound with respect
to Kripke semantics, and that all rules except (16) are invertible. The right
implication rule (16) is now the only rule which is inherently non-invertible. Note
also that the rule (16) is the only rule which can bring new formulas: any formula
not introduced as a member of the set ∆ in (16) must come from initial sequents.
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The rule (16) is applicable only to a sequent with exactly one formula in succedent.
Without this restriction, the rule would not be sound.

Let us think about a decision procedure based on our multi-conclusion calculus.
As in the previous section, the procedure reads the input sequent 〈Σ ⇒ Ω 〉 and
calls a Boolean function, now named M , on it. The function M denotes its
parameter 〈Γ ⇒ ∆ 〉, and in some cases recursively calls itself. It works as
follows:

(a) If ∆ contains a formula A & B such that A /∈ ∆ and B /∈ ∆ then call M
on 〈Γ ⇒ ∆, A 〉 and on 〈Γ ⇒ ∆, B 〉. Return true if both calls return true,
return false if some returns false.

Otherwise, use one of the rules (15) and (17)–(20) accordingly, but only if
profitable, i.e. if the embedded call or both embedded calls has or have pa-
rameter(s) different from 〈Γ ⇒ ∆ 〉.
(b) If instruction (a) is not applicable then return true if ⊥ ∈ Γ or if Γ and ∆
have an atom in common.

If instruction (a) is not applicable, i.e. if none of the rules (14), (15), (17)–(20)
can be profitably used, then the sequent 〈Γ ⇒ ∆ 〉 is saturated in the following
sense.

Definition 6 A sequent 〈Γ ⇒ ∆ 〉 is saturated if the following conditions are
satisfied:

◦ if A & B ∈ Γ (or A ∨ B ∈ ∆) then both formulas A and B are in Γ (or
in ∆, respectively),

◦ if A ∨B ∈ Γ (or A & B ∈ ∆) then at least one of the formulas A and B is
in Γ (or in ∆, respectively),

◦ if A→B ∈ Γ then A ∈ ∆ or B ∈ Γ,

◦ if A→B ∈ ∆ then B ∈ ∆.

Theorem 7 A saturated sequent 〈Γ ⇒ ∆ 〉 is intuitionistically tautological if
and only if it is initial or if there is a formula A→ B ∈ ∆ such that A /∈ Γ and
the sequent 〈Γ, A ⇒ B 〉 is intuitionistically tautological.

Proof Again the nontrivial implication is ⇒. So let 〈Γ ⇒ ∆ 〉 be saturated,
intuitionistically tautological and not initial. Let A1 → B1, . . , Am → Bm be a
list of all implications A → B ∈ ∆ such that A /∈ Γ. Assume that none of the
sequents 〈Γ, Ai ⇒ Bi 〉 is intuitionistically tautological. Let K1, . . ,Km be coun-
ter-models for 〈Γ, Ai ⇒ Bi 〉. Assume that a1, . . , am are roots of K1, . . , Km.
Let K be the model constructed from K1, . . ,Km as in the proof of Theorem 3,
i.e. by stipulating that a1, . . , am are the only immediate successors of a new
root a. Again, we evaluate all atoms in Γ positively and all the remaining atoms
negatively in a. Now the following claim can be proved by induction on complexity
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of a formula D: if D ∈ Γ then a ‖− D, and if D ∈ ∆ then a ‖−/ D. If D is
an atom in Γ then a ‖− D by definition. If D is an atom in ∆ then, since the
sequent 〈Γ ⇒ ∆ 〉 is not initial, we have D /∈ Γ and thus a ‖−/ D. So the claim is
true if D is an atom. It is evidently true also if D is ⊥. If D is A & B and D ∈ ∆
then, by the definition of saturated sequent, A ∈ ∆ or B ∈ ∆. The induction
hypothesis says a ‖−/ A or a ‖−/ B. So indeed a ‖−/ A & B. The remaining
cases when D is a conjunction or a disjunction in Γ or in ∆ are similar. So let D
be A→B. First assume that D ∈ Γ. We have to verify that x ‖− B whenever a ≤ x
and x ‖− A. If x is an element of some submodel Ki of K then there is nothing to
do since ai ‖− D. If x = a then, because 〈Γ ⇒ ∆ 〉 is saturated, we have A ∈ ∆
or B ∈ Γ, so x ‖−/ A or x ‖− B. Finally assume that D ∈ ∆. If D is some of the
formulas A1 → B1, . . , Am → Bm, say Ai → Bi, then for x = ai we have x ‖− A
and x ‖−/ B. If D is different from all A1→B1, . . , Am→Bm then A ∈ Γ. The fact
that 〈Γ ⇒ ∆ 〉 is saturated yields B ∈ ∆. Note that this is the place where the
weak implication rule (17) is helpful. By the induction hypothesis, for x = a we
have x ‖− A and x ‖−/ B. So in all cases when A→B ∈ ∆ there is an x accessible
from a such that x ‖− A and x ‖−/ B. So a ‖−/ A→B.

Having Theorem 7 we can complete our decision procedure for multi-conclu-
sion calculus:

(c) If none of (a), (b) is applicable then create a list A1 →B1, . . , Am →Bm

of all implications in ∆ whose premise is not in Γ. Call M on 〈Γ, A1 ⇒ B1 〉
to 〈Γ, Am ⇒ Bm 〉. Return true if some of the calls returns true, return false
otherwise.

In the formulation of the following Theorem 8 we need the notion of posi-
tive and negative occurrences of formulas in a sequent 〈Γ ⇒ ∆ 〉. All members
of Γ are positive, all members of ∆ are negative. If a formula A & B or A ∨ B
is positive (negative) then both subformulas A and B are positive (or negative,
respectively). If a formula A→ B is positive then the subformula A is negative
and the subformula B is positive. If a formula A→B is negative then the subfor-
mula A is positive and the subformula B is negative. For example, in the sequent
〈 ¬¬p→ p ⇒ p ∨ ¬p 〉, the formula ¬p (i.e. p→⊥) occurs twice: positively as a
part of the implication ¬¬p, and negatively as a part of the disjunction p ∨ ¬p.

Theorem 8 The procedure specified above works in polynomial space and cor-
rectly decides whether a given sequent 〈Σ ⇒ Ω 〉 is intuitionistically tautological.
If the sequent 〈Σ ⇒ Ω 〉 contains n logical connectives and r negative implications
then it either has a proof of depth O(n2) in the calculus with initial sequents (13)
and rules (14)–(20), or it has a Kripke counter-model of depth at most r, in which
every node has at most r immediate successors.

Proof Let T be the tree of all calls of the function M , which occur when the
procedure processes a sequent 〈Σ ⇒ Ω 〉 with n logical connectives and r negative
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implications E1 → F1, . . , Er → Fr, where obviously r ≤ n. Each vertex v of T is
labeled by a sequent 〈Γ ⇒ ∆ 〉, the parameter of the call of M corresponding to
the vertex v. If M uses instruction 1 then v has one or two immediate successors
according to whether M uses (in reverse) a unary or a binary rule. If M uses
instruction 2 then v has no successors, i.e. is a leaf in T . In both cases M returns
true if and only if all of the embedded calls return true. If M uses instruction 3
then the sequent 〈Γ ⇒ ∆ 〉 is saturated and non-initial and has m immediate
successors where m is the number of implications A→ B in ∆ such that A /∈ Γ.
The number m can be zero in which case the vertex v is a leaf.

A step made from a vertex v labeled by a saturated sequent to one of the immedi-
ate successors of v corresponds to the situation where M processes an implication
A→B ∈ ∆ by calling itself on 〈Γ, A ⇒ B 〉. Note that in this case the implica-
tion A→ B must be a member of the set { Ei → Fi ; 1 ≤ i ≤ r } of all negative
implications. Also note that the same implication is never processed again on a
path in T . From this it follow that each path in T contains at most r+1 saturated
sequents. The distance from one saturated sequent to another saturated sequent
on a path is bounded by 2n + 1, the number of all subformulas of a sequent with
n logical connectives. This is because each use of an invertible rule adds at least
one new formula to Γ∪∆. Thus each path in T terminates and has length O(n2).
The size of local data of any instance of M is quadratic in n. So the procedure
works in polynomial space.

As in Theorem 5, let’s say that a vertex in T labeled by 〈Γ ⇒ ∆ 〉 is positive or
negative according to whether M returns true or false when processing it. Con-
sider the following claim. Let a vertex v of T labeled by 〈Γ ⇒ ∆ 〉 be such that
the depth of the subtree of T generated by v is k and such that on any path from v
to some leaf there are at most m + 1 saturated sequents. Then if v is positive
it has a proof of depth at most k, and if v is negative it has a counter-model of
depth at most m in which every node has at most r immediate successors. This
claim is proved by an induction on k. Indeed, if k = 0 then either M applies
instruction (b), in which case v is positive and the sequent 〈Γ ⇒ ∆ 〉 is initial,
i.e. having a proof of depth 0, or M applies instruction (c) with no embedded
calls, in which case v is negative and 〈Γ ⇒ ∆ 〉 has a one-element, i.e. of depth 0,
Kripke counter-model. The induction step and the remaining considerations are
left to the reader.

To know that intuitionistic propositional logic is decidable in polynomial space
is interesting in connection with the fact that it is polynomial-space hard. That
is proved in [9]; a relatively easy semantical proof can also be found in my [10].
Let me remark that the precise role of the additional implication rule (17) is not
quite clear. It is redundant in the sense that it can be simulated by cuts and
the calculus without this rule allows cut-elimination. However, I do not know
whether the calculus with rules (14)–(16) and (18)–(20) directly (polynomially)
simulates the calculus with all rules (14)–(20). Our treatment of multi-conclusion
calculus, where the decision procedure never removes a formula from a sequent,
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can be viewed as showing that avoiding contraction is not the only way how to
ensure termination.
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